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Abstract 

This thesis addresses the issue, "Which approach to instabilities—temporal, 
spatial or pulse theory—is the most appropriate model for the Gulf Stream?" I also 
address the question of how the observations might be compared to theory. This thesis 
consists of two closely related parts: analytical studies that compare the three types 

of instability using the same realistic velocity and topography profiles; and numerical 
modeling that uses a continuous forcing function to examine the three types of theory 
in the direct context of the Gulf Stream. 

Analytical Studies: 

In a QG six-layer model with relatively realistic jet structure and topogra- 
phy, spatial instability theory gives a different and larger spatial growth rate (by about 
30%) than the equivalent spatial growth rate (ESGR) transformed from temporal in- 
stability with Gaster's formula. Faster mean flow or group velocity makes Gaster's 

transformation formula work better. Real parts of wavenumbers (or wavelengths) cor- 
responding to the most temporally and spatially unstable waves are comparable and 
not sensitive to mean velocities, velocity shear and ß. In the attempt to reconcile con- 
flicts in the literature, it has been found that one of Hogg's (1976) conclusions—that 
spatially growing waves are bounded by a low wavenumber cut-off which separates 
them from the temporally growing waves—is not valid. 

Pulse instability deals with the development of an isolated disturbance. One 
of the interesting features is that individual peaks in the leading edge of a wave packet 
can grow much faster than temporal instability predicts (Simmons and Hoskins, 1979). 

Because examining individual peaks is a common observational practice, this thesis 
focuses on how such a peak evolves. Whereas the amplitude of an individual peak 
increases with time, the growth rate decreases in the linear model; thus if one follows a 
single peak and notices a decrease in the growth rate, one cannot infer that increasing 
amplitude (or nonlinearity) was responsible for reducing the growth rate. In the QG 
six-layer model, the growth rates of individual peaks can vary from 30% to 220% of 



that of the peak of the wave envelope. Direct comparison between pulse and temporal 
theory shows that the former allows unstable waves to have local wavenumbers beyond 

the short wave cut-off in the latter. 

The effects of topography and vertical resolution are assessed in QG two- to 

six-layer models. From the analysis of potential density, it is shown that a minimum 
of three layers is necessary to address the effect of topography properly in the context 
of the Gulf Stream. In the case of pulse instability, a minimum of five layers is 
necessary to capture the characteristics of the instability. The effect of ageostrophy 
is studied by comparisons between QG and shallow-water (SW) six-layer models. 

The QG model overestimates the maximum growth rate by 40% compared to the 

SW model. The comparison shows that the QG model gives results quantitatively 

different from those from the SW model, but there is no qualitative difference between 
the two models in terms of the first most unstable modes. The results from both the 
QG and SW models have been compared to the observational analysis by Lee and 

Cornillon (1996a,b), and it appears to be a robust common feature in the models and 
the analysis that the fastest growing wave has higher growth rate, wavenumber and 

frequency than the most energetic wave. 

Numerical Experiments: 

A two-layer QG model with a jet structure and a single pulse initial condition 
or continuous forcing has been used to determine which type of instability theory is 
the most appropriate model in the context of the Gulf Stream. The first experiment 
shows that it takes about 45 days for a single pulse disturbance to develop close to 
its asymptotic form. In that period the wave packet has moved downstream 1100 km 
to about 65°W. Hence there appears to be enough space for the pulse instability to 

occur in the Gulf Stream. 

In the continuously forced problem, it has been found that the growth rates 

of individual peaks from the numerical runs scatter widely in the region from 200 
km to 1200 km downstream of the forcing location. It is clear that none of the three 
types of instability can explain the pattern given the continuous forcing. However, 
the "observations" from the model runs have shown one trend predicted by pulse 

instability: short waves tend to move and grow faster than long waves. This cannot 
be predicted from temporal or spatial instability. Due to a numerical difficulty, this 
analysis has not been extended to the region further downstream, where the pulse 

instability has been found to work better in the single pulse experiment. 

These numerical experiments support the robust common features of pulse 

instability we have studied in the analytical models, that the fastest growing wave 

has higher growth rate, wavenumber and frequency than the most unstable wave. 



Because the differences between the most unstable and the fastest growing waves 
of pulse instability theory in the analytical models seem able to explain substantial 
parts of the differences observed, and because the single pulse experiment suggests the 
analytical results may be carried over to their corresponding numerical models, pulse 
instability theory appears to be the most appropriate model for the Gulf Stream. 

Thesis Advisor: Dr. Glenn R. Flierl 

Title: Professor, Massachusetts Institute of Technology 
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Chapter 1 

Introduction 

1.1     Meandering of the Gulf Stream System 

The Florida Current, after it leaves the Florida Straits, develops meanders 

along its path downstream. Beyond Cape Hatteras the meanders develop to large 

amplitudes. In the past three decades, many analytical and numerical models have 

been developed to explain these meanders as the results of baroclinic and barotropic 

instabilities. The Gulf Stream system, however, is too complicated for a single dy- 

namic model to incorporate most of its main features. The complexity results from 

the following factors. First, the topography and coast have significant effects on the 

path and instability of the system (Warren, 1963, Orlanski, 1969). Second, the along 

stream variation of mean fields as well as that of the topography affects the devel- 

opment of the meanders. Third, the well-developed and studied quasi-geostrophic 

models may be inappropriate to handle the significantly large slope of mean density 

fields or the large Rossby number of the flow. Fourth, nonlinearity may have an 

important effect on the evolution of the meanders. Moreover, the classic theories 

of normal mode instability only provide the temporal growth rates that cannot be 

compared directly with the observed growth rates of individual wave peaks, which 

are often part of nonperiodic wave patterns. 
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1.2     Previous  Studies  and Motivation of Thesis 
Work 

In this section, I will list some of previous studies related to the Gulf Stream 

instability in Table 1 and 2. I will review the main results of a few most relevant 

papers to provide the background and to build up the motivation for this thesis work. 

Summary of Literature Survey: 

Table 1: Most relevant Papers 
Author Model char. Dimen. Type of inst. Topog. Comment 

Orlanski         1969 PE 2-Layer 2D mixed yes 

Holland et al 1980 QG 2-Level 2D mixed no 

Johns              1988 QG cont. ID baroclinic yes 

Kontoyiannis 1992 QG cont. 2D mixed yes 

Xue            1991a,b PE cont. 2D, 3D mixed yes 

Orlanski et all973 PE cont. 3D baroclinic yes lvp 

Luther et al   1985 PE cont. 3D mixed yes lvp 

L : Layer 

PE: Primitive Equations 

SW: Shallow-Water Eqns 

ivp: initial value problem 

Topog.: Topography 

Orlanski (1969) studied the stability of a two-layer model with bottom to- 

pography in the context of the Gulf Stream. Applying two different types of bottom 

topography typical in the regions upstream and downstream of Cape Hatteras, he 

found that the most unstable disturbances, corresponding to the basic flow upstream 

from Cape Hatteras, are markedly different in wavelength and period from those cor- 

responding to the basic flow downstream from Hatteras. This suggests the importance 

of bottom topography on unstable waves. However, Orlanski used simple analytical 

forms for topography; one effort of this thesis is to assess the effect of more realistic 
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topography and better vertical resolution in the context of the Gulf Stream beyond 

Cape Hatteras. 

Table 2: Other relevant Papers 
Author Model char. Dim. Type of inst. Topog. Comment 
Lipps              1963 QG1|L 2D equiv. bt. no /3-plane 
Tareyev          1965 QG cont. 2D mixed no 
Sela et al        1971 PE1|L 2D equiv. bt. no ageostr. 
Abramov et al'72a PE 2-Layer 2D baroclinic no /3-plane 
Abramov et al'72b QG 2-Layer 2D mixed no 
Nikitin et al   1972 PE 2-Layer 2D baroclinic yes /3-plane 
Hart                1974 QG 2-Layer 2D mixed no 
Flierl               1975 QG 1-L/2-L 2D bt.,be./mixed no /3-plane 
Abramov et al '83 QG 2-Layer 2D mixed yes /3-plane 
Ikeda               1983 QG 3-Layer 2D mixed yes 
Talley            1983a QG 1-Layer ID baroclinic no /3-plane 
Talley            1983b QG 2-Layer 2D mixed no /3-plane 
Killworth        1980 QG 2-L/cont. 2D mixed no /3-plane 
Killworth et al '82 QGUL 2D equiv. bt. no coastal front 
Paldor           1983a QG1|L 2D equiv. bt. no coastal front 
Paldor           1983b QGliL 2D equiv. bt. no density front 
Killworth        1983 QGl^L 2D equiv. bt. no density front 
Killworth et al '84 QG 2-Layer 2D baroclinic no density front 
Barth               1987 SW 2-Layer 2D mixed no coastal front 
Paldor et al    1991 QG 2-Layer 2D mixed no coastal front 
Flierl         preprint QG 2-Layer 2D mixed no contour dyn. 

Johns (1988) considered 1-D baroclinically unstable waves on the Gulf Stream 

PV gradient near Cape Hatteras. This linear instability model includes the topogra- 

phy variation in the cross-jet direction, however it excludes the cross-jet variation of 

basic flow, stratification and PV by averaging them across the jet and hence elimi- 

nates the barotropic instability. The model calculation results in a temporal growth 

rate kc1} which is then transformed into an equivalent spatial growth rate (ESGR), 

using Kl = kci/Cg, where k is the along stream wavenumber and Cg is the group 

velocity. This continuously stratified model was successful in predicting the time and 

13 



length scales of growing meanders, but predicted a smaller growth rate than that 

observed by a factor of two. 

Two major approximations were employed in Johns' model. The first is 

that the basic flow does not have cross-jet variation. This neglect of the variation 

may cause significant error as it was first pointed out by Phillips (1964). Moreover, 

because the thermocline is located at different depth across the stream, averaging the 

flow horizontally across the jet will effectively reduce the vertical gradient of basic 

flow across the thermocline. Hence this approximation tends to decrease the growth 

rate. The second is the QG assumption, which assumes small Rossby number. This 

is not a good assumption because the observations show that Rossby number is from 

0.3 to 0.5 in the Gulf Stream (Bower, 1989). Orlanski (1969) has found that the finite 

Rossby number decreases the instability. Hence the effect of this approximation is 

to increase the growth rate. The two assumptions therefore have competing effects 

on instability, and they may cancel each other partially or totally. When this model 

was extended to 2-D (i.e., barotropic instability recovered) by Kontoyiannis (1992, 

Ph. D. thesis, and 1994) the equivalent spatial growth rate of a mainly baroclinic 

mode became comparable to that observed. However, he used phase velocity instead 

of group velocity in the transformation (giving an estimate u>i/Cph which we will call 

the "pseudo-equivalent spatial growth rate", PESGR), which increased the equivalent 

spatial growth rate by a factor ranging from 5/3 (long waves) to 6 (short waves). The 

comparison would have been much worse if group velocity had been used instead of 

phase velocity in transforming the growth rate. 

Xue (1991a, thesis) applied a 2D primitive equation analytical model to 

study temporal instability of the Gulf Stream. The model also included the effect of 

bottom topography and gave results which were in good agreement with observations 

in terms of periods and wavelengths. She extended the study in a 3D numerical 

model (Xue,  1991b,  thesis) in order to investigate whether the unstable waves in 
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the 2D model will be able to grow into finite amplitude meanders before the mean 

condition of the Gulf Stream changes significantly and whether the result in the 2D 

model will be altered considerably if spatially growing modes are also permitted as 

well as temporally unstable modes. She estimated a growth rate of the dominant 

wave in the model from the change of eddy kinetic energy, but did not resolve the full 

dispersion relation. The estimated growth rate was not compared to the observations 

directly; nor was the result not analyzed in terms of either of three approaches to 

instabilities discussed below. Thus it is hard to infer from these simulations which is 

the most appropriate approach for the Gulf Stream meandering. 

Luther and Bane (1985) present a numerical model study of the unstable 

normal modes of oscillation of the Gulf Stream. Their model uses the primitive equa- 

tions and has filtered out all other types of instabilities except spatial instability. 

They found that one of modes from the model produces many of the features of an 

observed 8-day wave, e.g., comparable phase speed, current and temperature struc- 

tures. However they did not compare the model growth rates with observations. Our 

study has showed that the differences among temporal, spatial and pulse instabilities 

are much more prominent in growth rates than in phase speeds and other structures 

(see Chapter 2 and 3). So it is not obvious that spatial instability studied in their 

model is the best explanation for the meanders. 

All the studies summarized above except Luther and Bane's (1985) and 

Xue (1991b) considered dynamically only temporally unstable modes. Gaster (1962) 

showed that for small rates of amplification, to the lowest order of approximation, 

the frequency for a disturbance growing with respect to time is the same as that of 

a spatially growing wave with the same wavenumber, and the spatial growth rate 

is related to the temporal growth rate by the group velocity, as I discussed above. 

Hogg (1976) found that spatial and temporal waves in a baroclinic model are sepa- 

rated in wavenumber with short waves being spatially unstable and long waves being 
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temporally unstable. A neutral wave separates the two cases. This suggests that the 

transformation formula does not hold in that particular case at least. In fact, the 

validity of Gaster's formula has not yet been studied in detail in a realistic oceanic 

context and the relation between temporal and spatial growth is not well understood. 

Many of the authors mentioned above consider that spatial instability is more rele- 

vant than temporal one in the context of the Gulf Stream (e.g. Johns, 1988, Xue, 

1991a,b); however, spatially unstable modes were not studied in their models because 

of the difficulty of "nonlinearity" (the eigenvalue problem for spatial growth rate is 

not linear; see Section 2.3.2). Some authors regarded both temporal and spatial in- 

stabilities as the results of the same instability mechanism (e.g. Thacker, 1976), while 

others considered them as different kinds of unstable modes (e.g. Hogg, 1976, Luther 

and Bane, 1985). It appears interesting and meaningful to make this relation clear. 

And this is the first goal of the thesis. 

Both temporal and spatial instability theories are highly idealized. The 

temporal instability paradigm assumes that disturbances are distributed periodically 

in the along stream direction, while spatial instability assumes a periodic forcing with 

a single frequency (see Section 2.3) and hence a single dominant wavenumber over 

the whole domain. These assumptions are far from being realistic. In the context of 

Gulf Stream meandering, it is more appropriate to solve an initial value problem or 

a locally forced problem. If the initial disturbance is localized in a relatively small 

region, it will be simpler to consider pulse instability instead of the most general 

initial value problem. 

Many studies (e.g., Boudra et al,1988, Xue,1991b) suggest it to be most 

likely that the frontal disturbances are initiated and grow in the Florida Straits. Xue 

(1991b) concludes that her model is able to produce realistic meanders only when it 

is forced at the southern boundary, and meanders entering the domain are amplified 

downstream of the Charleston Bump.   Observations show that frontal meanders of 
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the Gulf Stream are not significantly correlated to any apparent forcing, such as local 

wind stress, in the South Atlantic Bight (Lee and Waddell, 1983). Many authors 

believe that initial disturbances are introduced in some special small regions such 

as the Florida Straits, the Charleston Bump, and Cape Hatteras, and are amplified 

when they propagate down stream. For this reason, I will also study the development 

of locally forced disturbances. 

Pulse instability allows wave amplitudes and wavenumbers to change in the 

space (see Section 2.3) and hence is less idealized and restrictive than the temporal 

and spatial instabilities. However the assumption of a single pulse disturbance and 

no further forcing has its own limitations. In the context of the Gulf Stream, it is 

more likely that the system is forced continuously. To determine which type of the 

instabilities is the most appropriate simple model in this complicated context, I will 

study a QG two-layer numerical model in Chapter 5. 

Lee and Cornillon (1996) have found that the most energetic meanders in 

the Gulf Stream have a period of 46 days and a wavelength of 427KM, while the 

fastest growing meanders have a period of 40 days and a wavelength of 350KM. 

These differences can not be explained by classic normal mode instability models. 

The second goal of this thesis is to provide a dynamic explanation for the discrepancy. 

The applicability of the QG model in the study of Gulf Stream meandering 

has long been questioned. Since QG models formally apply only in the case of small 

Rossby number, and small slopes of isopycnals and topography, we need to examine 

first whether these conditions have been violated in the Gulf Stream. From the 

observations, the Rossby number was estimated to be .3-5 in the Gulf Stream east 

of Cape Hatteras (Bower, 1989). The depth of the top of the thermocline varies from 

around 800m in Southern side to about 200m in Northern side, and the depth of the 

bottom changes from about 4900m to 1900m across a CTD section at 68°W running 

from 36.3°N to 40°N (Hall and Fofonoff, 1993).  Such large changes in the depths of 
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isopycnals and topography violate the formal assumptions of QG theory. Therefore 

one may expect that the QG approximation is not appropriate in the context of 

the Gulf Stream, and a question naturally arises whether the results obtained in 

QG models are qualitatively similar to primitive equation or shallow-water models 

and how large the quantitative differences are. To answer this question, I devote one 

chapter (Chapter 4) to the comparison between QG and Shallow-Water models (SW). 

This becomes the third goal of the thesis. 

1.3    Plan of the Thesis 

In Chapter 2, I will first introduce the basic concepts of temporal, spatial 

and pulse instabilities. I then start with a simple two-layer QG model with uniform 

velocities on each layer, Phillips' model, to study and compare the characteristics 

of these types of instabilities. This study is then extended to a QG six-layer model 

with more realistic velocity profile resembling the Gulf Stream in Chapter 3. The 

effect of bottom topography is also considered in the model. In Chapter 4, I will 

develop a shallow-water (SW) six-layer model to investigate the effect of ageostrophy. 

Comparisons of QG and SW models with observations will be made in Chapter 4. 

In Chapter 5, I will run some numerical experiments with relatively realistic velocity 

profiles and forcing to see which type of instability theory is most appropriate for 

the Gulf Stream and which are likely to be picked out by common observational 

approaches. Summaries and conclusions are presented in Chapter 6. 
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Chapter 2 

Normal Mode and Pulse Instabilities 

2.1     Basic Concepts 

2.1.1     Normal mode, temporal, and spatial instabilities 

Since the pioneering studies of Charney (1947) and Eady (1949), temporal 

instabilities in quasi-geostropic systems have been investigated extensively. Charney 

and Stern (1962) developed stability criteria for the case of an internal jet, i.e., where 

the meridional temperature gradients at the ground vanish. Pedlosky (1963, 1964) 

found the stability criteria for more general cases incorporating the effects of surface 

temperature gradient and topography and also found bounds on phase speed and 

growth rate. These studies contributed to form a more general stability criterion 

commonly known as the Charney-Stern stability theorem. 

In studies of temporal instabilities, normal mode solutions of the form 

exp(i(kx — ujt)) are investigated. More exactly, real wavenumber k and complex 

Lo are assumed in the above expression. Alternatively, we may take u to be real and 

the wavenumber to be complex. This will lead to another type of normal mode in- 

stability, spatial instability. There is also another alternative where both k and UJ are 

complex. 

Linear spatial instability was first studied by Michalke (1965) in a barotropic 

flow with a hyperbolic tangent velocity profile. He calculated the growth rates and 

phase speeds numerically from temporal (using PESGR) and spatial instability the- 

ories, and compared them with experimental results of Freymuth (1965). The ex- 

periments tended to support spatial instability at low forcing frequency and to agree 

with temporal instability at high frequency. At higher frequency, the equivalent spa- 
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tial growth rate converted from temporal instability, the PESGR, was found to be 

lower at high frequencies. Michalke estimated that nonlinearity reduced the growth 

rate more at higher frequencies and speculated that the tendency to approach the 

PESGR at high frequency was due to nonlinearity. 

Although both temporal and spatial instabilities are types of normal mode 

instability, the relation between them is nevertheless obscure. In the context of 

Gulf Stream instabilities, numerous studies have been done of temporal instabilities 

whereas only a few have examined spatial instabilities. In papers on the temporal 

instabilities of Gulf Stream, many authors (Xue, 1991, Johns, 1988, etc.) agree that 

spatial instability is probably more relevant than the temporal one in the context. 

However the study of spatial instability is more difficult than that of temporal one 

because the linearized QG equations lead to a non-standard eigenvalue problem whose 

matrix contains nonlinear terms of wavenumber k when we fix frequency (which is 

assumed to be real) and solve for wavenumber (see section 2.3.2). Spatial instability 

corresponds to a system forced in a local region at a constant frequency, e.g. by a 

wavemaker. Hogg (1976) solves for complex k for a given phase speed, c, rather than 

a given real frequency, which rendered the problem a linear eigenvalue one. However 

it is not easy to justify a fixed phase speed instead of a fixed real frequency condition 

in realistic systems since both the frequency and wavenumber are then required to 

be complex, and mechanisms which could fix the phase speed are unknown. I will 

return to this issue in Section 2.3.2. 

Observations and data analysis normally provide growth rates of individual 

peaks by peak-tracking techniques. How can a model of temporal instability be 

compared to observations? A relation proposed by Gaster (1962) is frequently used 

to convert the growth rate of temporal instability to an equivalent spatial growth rate. 

However Gaster's transformation formula is only valid when growth rate is small. Is 

the growth rate in Gulf Stream instability problem small enough to use the formulae? 
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As I mentioned above, Michalke (1965) showed in his problem that the 

difference between temporal and spatial instabilities is not very large (the pseudo- 

equivalent spatial growth rate, transformed from the temporal growth rate divided 

by phase speed, is only 17% smaller than that from spatial instability theory). Such 

a result is not, of course, general; in the Gulf Stream context of a baroclinic jet on 

the beta-plane, the differences between the various estimators of spatial growth rate 

are not known. They will be examined in detail in the next chapter. 

2.1.2      Pulse, absolute and convective instabilities 

Normal mode instability theories, temporal and spatial, assume that the dis- 

turbance is periodic in x or t respectively. These assumptions limit their capability in 

explaining the development of localized disturbances. Another type of linear solution 

—pulse instability— may be more relevant in this case. Pulse instability represents 

the asymptotic solution to the evolution of a localized disturbance, as an approxima- 

tion to the full initial value problem as t —» oo. The full IVP usually requires the 

use of a Fourier transform in space and a Laplace transform in time and eventually 

double inverse transforms. This in general is a formidable task even for the simplest 

of models. However, if we are only concerned about the asymptotic behavior of the 

evolution, it is appropriate to consider pulse instability. 

Pulse instability may be further divided into two categories—"absolute" and 

"convective" instabilities. These two concepts have been known in plasma physics for 

a long time and are helpful in explaining the evolution of a localized wave packet. 

The concepts can be easily illustrated in Figure 2.1 (from Briggs, 1964). When 

absolute instability happens, the disturbance spreads out in both directions so that 

the disturbance keeps growing in time wherever the disturbance reaches. On the 

other hand, when convective instability occurs, the disturbance "propagates along" 
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the system as it grows in time so that it eventually disappears if one stands at a fixed 

point. 

When a system is convectively unstable and is continously forced with con- 

stant frequency at a local region, spatial instability may occur. Spatial instability, 

as described above, assumes real u> and complex k. It also presumes an origin x = 0 

where the system has fixed amplitude and frequency, e.g. where a wavemaker gener- 

ates disturbances at a constant frequency. When the system is convectively unstable, 

disturbances generated at early times propagate away from the forcing location so 

that the amplitude at the point is closely related to the amplitude of the forcing. 

This makes the condition 'fixed amplitude' at the point more easily satisfied and spa- 

tial instability more likely to occur. On the other hand, if the system is absolutely 

unstable instead, the growing waves at the forcing location may eventually dominate 

the forcing amplitude, which makes it improbable that the amplitude at the point will 

be constant, and unlikely that spatial instability will give a reasonable description. 
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Absolute Instability 

Convective Instability 
Figure 2.1:  Upper panel: absolute instability. Lower panel: convective instability. 
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Figure 2.2: Absolute, Convective and Spatial instability. 
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2.2     Model Description 

We start with a simple two-layer quasi-geostrophic channel model (Phillips, 

1954, Pedlosky, 1986) to demonstrate the concepts of temporal, spatial, pulse, abso- 

lute, convective instabilities. Using such a simple model will allow us to focus on the 

basic conceptual ideas. We will solve the linear instability problem analytically and 

then run a numerical model with the same sets of governing equations to study how 

initial disturbances evolve into these idealized types of instabilities. 

The model does not consider friction. The stream function in each layer is 

independent of depth. Let n=l indicate the upper layer, and n=2 the lower one. 

Following Pedlosky (1986, Sec. 7.9 to 7.11), the equation of motion can be written 

l¥t+ TJ-Ty - l&jbl**' ~ '-(-»H* - *) + Ar] = 0 (2-2.1) 
with boundary condition 

■>Pn = 0,   y = 0, Ly,    n = l,2 (2.2.2) 

where ß is the nondimensional gradient of planetary vorticity and Fn the Froude 

number in each layer, i.e. 

L2 

ß = ßo-jj (2.2.3a) 

fo2L2 

Fn = g[(P2 -\)lPo]Hn 
(2-2'3b) 

L is the length scale of motion we are focusing on and Hn the depth of each layer. 

The standard linear instability theory for a basic state with uniform zonal flows Un 

and perturbations </>n = Ansin(ljy) e*fe(x-ct) gives the eigenvalue problem 

det 
(c - t/x)(tf2 + F1) + ß + F,{UX - U2),       -(c - U1)F1 

-(c - U2)F2,      (c - U2)(K
2 + F2)+ß + F2(U2 - Ui) (2.2.4) 

where K is the total wave number, 

K2 = k2 + I2 
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h=T~   J= 0,1,2,... (2.2.5) 

For given k or k2, Equation (2.2.4) is quadratic for c or UJ. And for given 

c, it is also quadratic for k2 or if2. Thus both temporal instability and the case of 

spatial instability for given c considered by Hogg (1976) have simple solutions. In 

more general cases with more layers and/or multiple grid points in y, these two cases 

can still be expressed as standard eigenvalue equations for c or k2. However for given 

u> = kc, Equation (2.2.4) becomes a sixth order equation for k (see section 2.3.2). 

Therefore even the simple Phillips' model does not have a simple analytical solution 

for k given u. In the more general case, the eigenvalue problem cannot be expressed 

in standard form. The dispersion relationship Equation (2.2.4) will be analyzed in 

Section (2.3) using the three approaches—temporal, spatial, and pulse instabilities. 
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2.3     Model Results 

This section will represent solutions to Equation (2.2.4) in subsections de- 

pending on the approaches. 

2.3.1 Temporal Instability 

The temporal instability approach assumes real wavenumber k and solves 

for complex frequency OJ or phase speed c. Equation (2.2.4) gives a quadratic equation 

for c, whose solutions are discussed in detail by Pedlosky (1986, Section 7.11) 

c U3K
2(K2 + 2F2) - ß(2K2 + FX + F2) 

2 2K\K2 + Ft + F2) 

[ß\F, + F2f + 2ßUsK\Fl - F2) - K*U.\lFxFj - if4)]1/2 

2K2(K2 + Fx + F2) 
[        ' 

Here we only take an example to show how the solutions look like for a set 

of parameters tuned to oceanic cases where the ratio of the upper layer depth to 

the lower one is normally taken to be 1/5, hence Fx and F2 are chosen to be 5/6, 

1/6. Two sets of parameters for Ux and U2 were used: (1.3, 0.5) and (1.0, 0.2). The 

velocity shear between two layers is kept constant so that we can investigate how the 

mean velocity affects the nature of instabilities, ß is arbitrarily set to be 0.05 for 

most cases, ß can be varied to change the growth rates of the instabilities. For a set 

of parameters (C/'1 = 1.0, £/2=0.2, /3=.05), the solutions are shown in Figure 2.3. 

2.3.2 Spatial Instability 

Spatial instability is achieved when a system is forced at a local region with 

a constant frequency. For a given u = k c, Equation (2.2.4) can be rewritten as 
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Figure 2.3:  Upper panel: real frequency u>r and phase speed cr vs k,solid line: wT, dashed line: cr. 

Lower panel: W{ and C{ vs k, solid line: Wi, dashed line: C{ 
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det (w - kU^K2 + Ft) + kß + kF!{Ui - U2),      -(to - kU1)F1 

-(a, - kU2)F2,      (u - kU2)(K
2 + F2) + kß + kF2(U2 - Ux) 0      (2.3.2) 

However this gives a sixth order algebraic equation in k for any given u. Its solution 

can only be calculated numerically. 

For comparison, the parameters Fn and Un are chosen to be the same as in 

the temporal instability case. The solutions are shown in Figure 2.4. 

In the upper panel of Figure 2.4, there are six solutions for each given real 

ui (some solutions may have the same real parts or the same zero imaginary parts). 

Two solutions have large values of \k{\ which do not vanish when to goes to oo 

These solutions should be discarded according to a "rule" due to Briggs (1964). The 

criterion basically says that for given uT = u0, if we increase a;,- from 0 to oo, only 

those solutions of k whose imaginary parts are negative when a;; = 0 and change their 

signs when w; increases correspond to the growth of the disturbance. The physical 

idea behind this rule is that all growing waves have finite phase speeds and growth 

rates—which means that signals propagate and grow with some delay with respect to 

the forcing source. If we let the amplitude of the forcing grow at a rate, say u}i} waves 

in the far field will, respond to the forcing amplitude at some previous time when it 

was weaker. And if we increase a;,- from 0 to oo, the spatially growing waves which 

exist when w; = 0 will eventually become small compared to those near the forcing 

source, i.e. the forcing grows faster than waves in the far field. Thus the disturbance 

looks like decaying waves. On the other hand, waves which are decaying when a;,- = 0 

will remain as decaying waves and hence their spatial growth rates will never change 

signs when wt increases from 0 to oo. In the following I will take an example to show 

how to apply this criterion. 

Let us take to0 = u>r = .2 and we calculate k as a function of u> = OJT + iu{. 

As UJ, runs from 0 to oo (or to a number large enough), we keep track of the solutions 
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Figure 2.4: Upper panel shows the spatial growth rates as functions of frequency. The dotted 

curve with largest negative h does not correspond to an amplifying wave as explained in the text. 

The lower panel shows the real wavenumbers as functions of frequency. 
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of k. Figure 2.5 shows the evolution of k as w; increases. The starting point of each 

solution corresponds to u){ = 0. Only one solution crosses the real axis of k and also 

has a starting point below real axis of k, corresponding to the spatial growing mode, 

we will see later on page 78 in Section 2.5.1 that this mode is the only growing wave 

we can observe in numerical runs. 

Our analysis above assumes that disturbances are generated at x = 0 and are 

propagating in the positive x direction. This requires negative ki for the disturbance 

to be spatially unstable. For the convenience of comparison, we often compare —ki 

with estimates of spatial growth rates. 

In the same paper mentioned above by Briggs (1964), he also proved that 

for any system to support unstable waves, its dispersion equation must yield complex 

solutions with positive imaginary parts for some real k, i.e. it is a necessary condition 

for any unstable waves. 

In contrast, Hogg (1976) argued that the wavenumber can be complex for 

real phase speed in the limit of zero frequency and his analysis implied that spatial 

instability does not require potential vorticity gradients to change sign. However, he 

did not consider Brigg's criterion (this was first pointed out by Pierrehumbert, 1986) 

and so may have included complex k roots which do not correspond to actual spatial 

instabilities. In addition, the purely spatially unstable wave Hogg considered is really 

better thought of as neutral because its phase speed is real. This can be seen by 

following an individual peak of the wave. 

Aoj{kx-ut)    =   AojH*-ct) 

=    [J40e"
fci(x"c<)|elMx"ct) 

=    A-\ e
lkr(x~ct) 
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Figure 2.5: Track of k{ as u>; increases 
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where A0 is the initial amplitude of the wave. Following an individual peak, the 

phase factor kr(x — ct) is constant, which leads to constant — ki(x — ct) and hence 

constant At. So the wave propagates (except when c = 0) but does not grow in time 

and space, or more explicitly its decay in time — u>i * t = fact and growth in space 

—fax exactly offset each other. Essentially each peak proceeds downstream without 

changing amplitude, but successive peaks generated at the source become weaker 

and weaker with time. Thus a pattern with small amplitude waves near the source 

and larger amplitudes downstream is set up, giving the false appearance of a spatial 

instability. 

When c = 0, the wave does not propagate and does not grow in time either— 

this corresponds to a steady, spatially growing pattern. Since the wave does not 

propagate, the pattern cannot be set up by a localized forcing. Without applying 

Briggs' criterion directly to his problem, I cannot rule out the possibility that the 

steady, spatially growing pattern is a true spatially growing wave. However, it is 

most likely that c = 0 corresponds to a neutral wave as well because neighboring 

positive and negative real c correspond to neutral waves. Figure 2.4 shows that the 

Phillips' model example does not have spatially unstable modes at OJ = 0. 

2.3.3     Pulse Instability 

Temporal instability assumes that disturbances are periodic in the horizontal 

direction. This is not proper when the initial disturbance is localized in a region. 

In this case it is more appropriate to solve the initial value problem. An initial 

value problem usually involves the use of a Fourier transform in space and a Laplace 

transform in time. Thus the double inversion of the transforms must finally be done 

to convert solution back to physical space and time. This is generally a formidable 

task even for the simplest models. However, the asymptotic form of the solution 

can be obtained for large times by using a Greens function method (Briggs, 1964). 
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Briggs shows that the asymptotic response to a localized forcing or a pulse comes from 

the double roots of the dispersion relation enclosed in the deformed Fourier contour. 

However, the only contributions to the asymptotics come from double roots which are 

formed by the coalescence of two k roots originating from opposite sides of the real k 

axis. The roots move together as we shift the Laplace inversion contour. He also shows 

that a double root is equivalent to a saddle point. Hence the asymptotic approach 

with a Greens function used by Briggs is equivalent to a saddle point approach given 

that each saddle point found has been formed by two roots of k originating from 

the opposite sides of real k axis (Briggs absolute instability criterion). Here absolute 

instability occurs in a frame moving at a given group velocity, rather than a fixed 

point, except when the group velocity is zero. The criterion is crucial for a saddle 

point approach to give a correct solution, as emphasized by Pierrehumbert (1986). 

Interested readers are referred to Briggs (1964) and Pierrehumbert (1986). 

The pinch singularity method Farrell (1982) will be used to find saddle points 

for given group velocity. It is the extension to the complex plane of the stationary 

phase technique for stable wave packets. I will follow Farrell's argument (1982) to 

introduce the pinch singularity method, but interpret it in a slightly different but 

equivalent way—as a version of the steepest descent method. 

The solution of the initial value problem can be expressed as an integral 

over the normal mode solutions consisting of the exponentially growing and decaying 

modes plus another integral over a continuous spectrum. The decaying modes do 

not contribute for a large time. The contribution of the continuous spectrum is at 

most 0(t) (Burger, 1966), and is negligible comparing to the exponentially growing 

modes for a sufficient large time. The asymptotic solution then can be expressed as 

an integral over the exponentially growing modes only, 

#E,M)= /    °°dka(k)Mzy{kx~ut) (2-3-3) 
J — CO 
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where a(k) is the projection of initial conditions on the normal mode at k and ipk(z) 

the vertical structure of the mode at A. In order to look at asymptotic behavior for 

t —> oo but fixed |, we define 

n(fc) = u>{k) - k^ (2.3.4) 

In the Equation (2.3.3), variable k is real and runs from -oo to +00 . 

However, according to the Cauchy theorem, if the integrand is an analytical function 

of A;, we can deform the integrating contour arbitrarily without changing the integral. 

It is reasonable to assume analyticity of a{k). ti(k) or w(k) may have branch points, 

but we assume we can avoid going around these points (I will return to this issue 

shortly in this subsection). Then we can deform the integrating contour to take a 

steepest descent path through the saddle point (see, e.g., Bender and Orszag, 1978). 

This implies fi,(fc) = Ui{k) - fc,| will be constant along the path, i.e. 

dk* 

And in the vicinity of the saddle point 

-fi|fcj = 0 

ü ~ ü{ks) + ^n"(ks)(k - ksy (2.3.5) 

where 

n"(ks) = ^ü(ks) 

Choose the path so that -±ü"(ks)(k - ksf is real and negative, so that we have 

1>{x, z, t) 9* a(ks)i;kXz)e-in^tI(ks,t) 

where 

/OO •      it 

-OO 

1 

y/*\ff'(kt)\t/2 (2'3'6) 
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And finally we get 

i>(x,z,t) = b(k3Wka(z)t-l/2e-in^t 

= &(Jfe.tyfc.(*)*"1/V(fc'B"ü,(fc,)0 (2-3.7) 

If Qi > 0, the system is unstable, and the growth rate is fi; at the point. For 

a pair of x and t given, if there is such a point, the growth rate will be valid for any 

pair of x and t as long as f is the same. This is to say that an observer in a reference 

frame moving at f will see the disturbance growing at the same growth rate tti(k3). 

Equation (2.3.7) gives the asymptotic solution seen by the observer. 

From Equation (2.3.6), we see that the asymptotic solution may break down 

when ü"(k3) is close to zero, i.e., the group velocity is close to its maximum or 

minimum points. In that case, the expansion in Equation (2.3.5) has to be carried to 

the third order. 

It is easy to see according to Cauchy-Riemann condition that ~^ü = 0 leads 

■ET-Q = 0, and hence 
akr ' 

d d , d zN     . d 

By definition, we have Cg = ^-wr and hence at the saddle point k = ks, Cg = f for 

given x and t. In other words, given x and t, the wave which dominates the point 

x at the time t has a group velocity Cg = f. If we can find solutions for all Cg, we 

have solutions for any x and t given large t. It is important to remember that Cg is 

evaluated at a complex value of k, not along the real axis. 

In the above derivation, I have assumed that when ti(k) or u>(k) have branch 

points, we can avoid going around these points in some way. It is difficult to prove 

this assumption mathematically. In some cases, (Pierrehumbert, 1986), the contour 

cannot be deformed to the saddle point and saddle point analysis gives incorrect 

results.    For our full model in later chapters, the solutions are too complex for a 
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detailed analysis of how the contour can be moved. Instead, we show that direct 

numerical simulation of pulse instability agrees well with the saddle point analysis. 

Readers are referred to page 72 and Figure 2.26 in Section 2.5 for such a comparison. 

The pinch singularity method, as long as all saddle points satisfy Briggs' 

absolute instability criterion, can be used to determine whether a system is absolutely 

or convectively unstable. If such a saddle point is found for Ca = - = 0 with 

fti(k„) > 0, the system is absolutely unstable. The amplitude of wave envelope at 

x=0 (the point of excitation) will grow as exp(tii(k„)t). And for any x when t is large, 

the amplitude of the local envelope grows at the rate 

Vi = Wi(k,) - Im{k3)j (2.3.8) 

This is a simpler method to determine whether a system is absolutely or convectively 

unstable in comparison with the Greens Function method used by Merkine (1977) 

and Thacker (1977). Although the latter can provide an analytical criterion for a 

simple two-layer model, its application to an even slightly more realistic model will 

be extremely tedious and complicated. The steepest descent method only provides an 

asymptotic solution for large t, while the Greens Function method can provides a full 

solution as long as the integral can be done. However the difficulty in carrying out 

the integral generally limits its power to such a extent that eventually an asymptotic 

approach has to be taken. 

Figure 2.6 shows the results of pulse instability. Growth rate is shown in the 

bottom panel, frequency and wavenumber in the middle and upper panel respectively. 

The 'x' marks indicate values corresponding to the maximum of the envelope growth, 

which is the same as the temporally most unstable wave. This is always true because 

gj^uji = 0 for the most unstable wave, which means that in the plane of a; as a function 

of k, that point itself is a saddle point for a reference frame moving at Cgm. Cgm is the 

group velocity corresponding to the temporally most unstable wave. This information 

gives a starting point to search for other saddle points incrementally away from Cgm. 
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Figure 2.6:  Pulse instability. 
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Since for different C'gs, real wave numbers are significantly different, pulse 

instability predicts variable space scales of a developing disturbance, while temporal 

instability assumes the same space scale everywhere. 

2.3.4     Comparison with Farrell's Model 

Farrell (1982) also studied pulse instability in a two-layer model with pa- 

rameters tuned to atmospheric situation. The model dynamics are the same in his 

model and model studied here. He used Ux = 2, U2 = 0, ß = 1 and Fi = F2 = 1. 

His results are shown (dashed curve) in Figure 2.7. I have rescaled his results so that 

they are comparable to mine. His ß = 1 is equivalent to ß = 0.25 in my model. The 

solid curves are the results we seen in the last subsection. 

The lower panel shows the growth rates of the envelope. Although in his 

model, unstable waves extend to larger range of Cg, there does not seem to be much 

qualitative difference. His model has nonzero growth rate at Cg - 0, implying ab- 

solute instability, whereas my model is convectively unstable. This is simply due to 

choice of mean velocity. If we add a uniform barotropic velocity U0 to the system, 

the growth rates will only shift by U0 in the Cg coordinate. However, our results 

are different from those of Farrell's (1982) in one aspect. From the upper panel of 

Figure 2.7, in the two-layer oceanic model used here, real wavenumber increases sig- 

nificantly when the group velocity increases while in Farrell's two-layer atmospheric 

model, the real wavenumber decreases when the group velocity increases. 

This means that in the oceanic case, signals of short waves travel faster than 

long waves, while the opposite is true in the Farrell's model. Hence the structures 

of growing wave packets in the two models will be qualitatively different. This im- 

plies we cannot generalize to the oceanic model the conclusion Farrell made regarding 

cyclogenesis in the atmosphere that slowly traveling short waves contribute more to 

39 



absolute instability if there is any. For the parameters chosen above, the system is 

convectively unstable since u{ is zero for Cg=0. And if we reduced the barotropic 

component of the flow, we would find absolute instability with longer waves growing. 

In order to investigate why such a difference exists, I will vary two inde- 

pendent variables 8 = Hx/H2 and ß with velocity shear Ux - U2=l fixed . Here ß, 

the nondimensional gradient of planetary vorticity, is rescaled as ß = p°_Ua) (see 

Equation (2.2.3a)). 

In the two-layer model, with Ux - U2=l, the critical value of ß for the system 

to be unstable is F2 = ^. In the range of [0 F2], I consider three different cases; 

the first, ß = 0.1 * F2; the second, ß = 0.5 * F2, which is the midpoint of the range; 

and the third, ß = 0.9 * F2, which is close the critical value. These three cases are 

shown in the upper, middle and lower panels of Figure 2.8 respectively. Only the real 

part of wavenumber is drawn as a function of group velocity for each pair of (8, ß). 

The value of 8 is labeled in the figure near its corresponding curve. 

From the upper panel of Figure 2.8, we see that when ß is small, the real 

part of wavenumber is increasing in the forward segment of the wave packet except in 

the very leading edge. The slope depends on the value of 8, but the upsloping trend 

does not. In the backward segment, the trend is sensitive to the value of 8 except in 

the very trailing edge: fairly flat or upsloping when 8 = 0.2, and downsloping for the 

other cases (8 = 0.6 or 1.0). In the middle panel, when ß = 0.5 * F2, the trend in the 

backward segment is similar to the upper panel. However, the trend in the forward 

part is very sensitive to the value of 8. For small 8, the curve is upsloping whereas 

for large ß it is downsloping. The transition happens between 0.5 and 0.6. 8 = 1 case 

is the case Farrell studied and 8 = 0.2 is close to the case I shown in the previous 

subsections. From the lower panel, when ß is close to its critical value, the trend is 

similar for all values of 8. 
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Comparison with Farrell's model 
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Figure 2.7: Comparison with Farrell's Model. Solid curves indicate the results from my model. 

Ui=l, #2=0.2, 6 = 0.2 and /3=0.05. Dashed curves show Farrell's results rescaled to be comparable. 
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In summary, for the oceanic case where 8 is small, short waves tend to 

appear in forward segment of the wave packet except when ß is very close to its 

critical value. For the atmospheric case where 8 is large, long waves tend to appear 

in forward segment of the wave packet except when ß is close to zero. According 

to Stone's argument of baroclinic adjustment (1978), ß in the atmosphere is close 

to critical value, so the trend in Farrell's model seems reasonable in atmosphere, 

although the value of ß he used is not close to critical value. The Gulf Stream, on 

the other hand, is very far from critical. 
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2.3.5     The Growth Rate of an Individual Peak in Pulse In- 
stability 

In the previous section, we have seen that when a disturbance is generated 

in a local region in an unstable system, the disturbance will evolve into its asymptotic 

form after a large time. The asymptotic form (Equation (2.3.7)) is 

Also we have shown that given x and i, the wave which dominates the point x at the 

time t has a group velocity Cg = |. The growth rate of the amplitude of the local 

envelope, for any x when t is large, is given by Equation (2.3.8), repeated below for 

convenience. 

Ui = Ui(ks) - Im{ks)- 

One interesting feature of the pulse instability is that the individual peaks 

generally grow at rates different from that of the envelope (Simmons and Hoskins, 

1979). This is because an individual peak propagates at phase speed which is different 

from the group velocity. It is easier to understand this phenomenon in a neutral wave 

packet. For a neutral wave packet, the envelope decays at a rate proportional to i-1'2 

due to dispersion. For the simplicity of demonstration, we assume the envelope does 

not decay. Even in this case, if an individual peak at the forward paradigm of the 

envelope propagates at a phase speed less than the group velocity, it actually moves 

towards the center of the wave packet. Hence its amplitude is increasing, and so its 

growth rate is positive. On the other hand, if an individual peak at the trailing edge 

propagates at a phase speed less than the group velocity, it actually moves away from 

the center of the wave packet. Hence its amplitude is decreasing, and so its growth 

rate is negative.   Therefore, even if the envelope itself does not grow or decay, an 
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individual peak can still grow or decay depending on its relative position in the wave 

packet. 

In the case that the wave envelope also grows, the feature is still the same 

because the amplitude of the envelope is positively and exponentially related to the 

growth rate at the location. In fact, the differential in the envelope growth enhances 

such a feature. When an individual peak in the forward paradigm of the envelope 

propagates at a phase speed less than the group velocity, it not only moves toward a 

region with a larger amplitude and but also toward a region with a larger local growth 

rate (the growth rate of the envelope at the location). Therefore it will appear to grow 

at a rate higher than the local growth rate in addition to the amplitude differential 

effect. The reasoning can be similarly applied to the case when a peak moves toward 

a region with a lower growth rate and a smaller amplitude. The opposite is true in 

this case. 

Because the amplitude of a peak is equal to the amplitude of the envelope 

at the same location, we can calculate the growth rate of the peak from the growth 

rate of the envelope. Suppose the disturbance is generated at or around x0 = 0 and 

at t0 = 0. After a large time t, we start to keep a track of an individual peak in the 

well developed wave envelope. The positions of the peak at t and t + St are x and 

x + 8x respectively (see Figure 2.9), and the corresponding group velocities Cg and 

Cg + 8Cg. The average phase speed of the peak between t and t + St is Cp/l. Consider 

8t-> 0; 

OX 
Cph   =    lim — = x 

5t-*o St 
x 

c'  =  7 

and the amplitude of the peak at t is equal to the amplitude of the envelope at x, 

which is 
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Figure 2.9:  Schematic picture of an individual peak moving downstream. 

A   =   |&(*.)M*)l*"1/2eMi(C,)' 
=   a{Cg)r"2e<c^ (2-3.9) 

where a(Cg) = |6(Jfe,)W*)l- Note that k> only depends on C9. a also depends on z 

but this dependence is not essential in the derivation and it is omitted for convenience. 

The growth rate of the peak is 

1 dA        dln(A) 
Vipeak A dt dt 

dlna ■        1 dvi 

- <*• - s + * + ^ (2"3'10) 

where a dot over a variable means the first order derivative of the variable with respect 

to t. 

C0 = —Cg 
d _ d x 

dt 9 = dtl 

(-Cg + x)/t = (Cph-Cg)/t (2.3.11) 

these relations lead to 

•W = (f^)«^ - C.)/t - i + « + (CFk - C.)g (2.3.12) 
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c, 

Figure 2.10: An example of the growth rate of the envelope as a function of Cg. 

The first two terms in Equation (2.3.12) are proportional to 1/i.  Hence for large t, 

we have1 

ViPeak  = Vi{Cg) + {Cph - Cg)-~ (2.3.13) 

Given the growth rate of the envelope in Figure 2.10 and Cg > Cph, individ- 

ual peaks in the leading edge grow faster than the maximum growth of the envelope, 

while peaks in the trailing edge grow slower than the maximum growth of the enve- 

lope. This relation was first found by Simmons and Hoskins (1979) in a numerical 

experiment on unstable baroclinic waves in atmosphere. Equation (2.3.13) was also 

given in their paper without a mathematical derivation. Here I have provided a 

detailed theoretical derivation. 

In Section 2.5, I will demonstrate in detail how to calculate the growth rates 

of the envelope and individual peaks from numerical experiments. 

Note that we can similarly derive a more accurate formula for the growth rate 

of the envelope (f;_adj). In fact, we can start with right hand side of Equation (2.3.10), 

and use the relations Cg = 0 for the envelope, to get 

yi.adj = ~— + Vi (2.3.14) 

*In the case of a neutral packet, vi = 0, the first two terms are all that appear and we see that 
a peak can still grow, if it moves from the front of a packet towards the maximum of the envelope 
sufficiently rapidly to overcome the spreading of the packet. But the growth rate decreases as \. 
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the correction term -£ may be significant when t is small. The 0(1 /t) term will be 

detectable in the numerical experiments in Section 2.5. And in Chapter 5, we will 

see that it takes much less time for a wave packet to reach viu0ldj than i/;. 
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Given the growth rate of the envelope V{ in Figure 2.6, we can calculate the 

growth rate of an individual peak Vipeak from Equation (2.3.13). Figure 2.11 shows 

the comparison. Figure 2.11 is the same as Figure 2.6 except that the dark solid curve 

in the lower panel indicates growth rate of an individual peaks. It has a maximum at 

Cg = 1.02; this point and corresponding frequency and wavenumber are marked with 

dark 'x's. The maximum growth (0.176) exceeds the maximum growth of the envelope 

(0.099) by 78%. The corresponding frequency and wavenumber are also higher than 

their counterparts (marked by 'x's) associated with the maximum of the envelope. 

The Vipeak curve crosses the maximum of Vi curve since at that point -^- — 0. Behind 

the maximum of the envelope, an individual peak grows slower than the envelope. 

Vipeak curve crosses V{ curve once more at Cg = 0.32 due to zero Cph — Cg. A peak 

behind the crossing point can also grow faster than its envelope. This feature that 

is near the trailing edge the individual peaks grow faster than the envelope does not 

appear clearly in the QG and shallow-water Gulf Stream models in Chapter 3 and 4 

(see Sec. 3.5. and 4.3.), possibly due to the jet structure used there. 

Given the growth rate of individual peak Vipeak, if we focus on a peak in the 

leading edge of a well developed disturbance envelope, we can predict its future po- 

sition and amplitude by integration. Assume a starting amplitude of 1 for simplicity. 

Given Cg = x/t, we can look up vipeak and Cph for that spot, from which we compute 

the position and amplitude of the peak for next time step. Repeating the procedure 

step by step, we collect the history of the individual peak. Figure 2.12 shows the 

results of such an experiment. The integration starts at Cg = 1. In the figure, growth 

rate, phase speed and wavenumber are plotted vs time. We see that the growth rate, 

phase speed and wavenumber of the individual peak decrease as the peak evolves. 

When the peak is on the leading edge of the envelope, its growth rate can be much 

larger than that of maximum envelope growth. 
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Figure 2.11:  Comparison between the growth rates of the envelope and an individual peak. 
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Alternatively, we can plot growth rate, phase speed and wavenumber as 

functions of amplitude or logarithm of amplitude. We scale the amplitude of the 

peak by its starting amplitude. Figure 2.13 shows these quantities vs logarithm 

of amplitude. The pattern is very similar to Figure 2.12. The growth rate of the 

individual peak decreases as the amplitude increases, and so does the wavenumber. 

This seems like a nonlinear effect of amplitude on the growth rate, but, instead is an 

intrinsic property of pulse instability and has nothing to do with nonlinearity since 

we are using a linear model. Because the amplitude has been scaled by its starting 

amplitude, the absolute amplitude is not important here. It is not the amplitude itself 

that matters but the position of the peak relative to the maximum of the envelope. 

Given a dispersion relation and a starting amplitude of a peak in a well developed 

wave packet, the growth rate can be related to the subsequent amplitude, but the 

reduction of growth rate is not due to the increase of amplitude but rather to the 

shifting position within the packet. 

The implication of this effect is that a set of peaks starting with the same 

amplitude but at different positions relative to the maximum of envelope will grow 

at different rates and have different properties. 

This effect is an important difference of pulse instability from temporal and 

spatial instabilities. In a nonlinear system, this intrinsic property of pulse instability 

may be coupled with nonlinearity and it may become difficult to tell them apart. 
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Figure 2.12:    Properties of an individual peak vs time.   Ui = l and £/2=0.2 and /3=0.05.   The 

integration starts at Cg = 1. 
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Figure 2.13:    Properties of an individual peak vs log of amplitude.   Ui 

/3 = 0.05. 
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2.4     Comparison between the three types of insta- 
bility theories 

Comparison between temporal and pulse instabilities 

In Figure 2.14, the lower panel compares the growth rates of temporal and 

pulse instabilities as functions of real part of wavenumbers. The growth rate here 

refers to the envelope growth in the case of pulse instability. The maximum growth 

rate and corresponding properties such as frequency and group velocity of the envelope 

in pulse instability is the same as the most temporally unstable wave as we have seen 

before. The corresponding properties (in upper panel) such as frequencies and group 

velocities in both theories are also the same for that wave. 

One interesting feature shown in the figure is that pulse instability allows un- 

stable waves to have wavenumbers beyond short wave cut-off of the temporal theory. 

This is reasonable because we are comparing the real part of the local wavenumber 

in pulse theory with a global wavenumber in temporal theory. The local wavenumber 

in pulse theory contains a nonzero imaginary part, so that even if its real part is 

the same as the wavenumber in temporal theory, its frequency u;(kr + iki) has been 

extended to complex A; plane and is naturally different from that in temporal theory 

KM)- 

Around the most unstable wave, the growth rate and group velocity have 

multiple values corresponding to a wavenumber. Cg in temporal theory is fairly 

uniform in the unstable range, while Cg in pulse theory varies dramatically and can 

be different from the former by as much as 100%. The frequencies in the two theories 

agree with each other reasonably well. The maximum difference occurs at the short 

wave cut-off of the temporal theory. 

Comparison between temporal and spatial instabilities 
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Figure 2.14:  Comparison between temporal and pulse instabilities. 
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Figure 2.15: Temporal and Spatial, Ux = 1,J73 = 0.2, ß = 0.05 
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Figures 2.15 to 2.17 compare the differences between temporal and spatial 

instabilities. The solid line always represent the spatial growth rate (SGR) from 

spatial instability, while dashed lines the equivalent spatial growth rates(ESGR) esti- 

mated from the temporal growth rates divided by group velocity according to Gaster's 

transformation formula. The dotted line in the lower panels indicate another type 

of equivalent spatial growth rates transformed from the temporal rates divided by 

phase speed. Let us call it pseudo-equivalent spatial growth rate (PESGR). This 

transformation does not have the same theoretical support but has been used in some 

observational studies (e.g., Watts and Johns, 1982, Kontoyiannis, 1992). In the up- 

per panels, the dashed lines represent the real wave number from temporal instability. 

The parameters are the same as before unless specified otherwise. I varied ß to change 

the growth rates. 

In the lower panel of Figure 2.15, we see that for the most unstable waves, 

PESGR are larger and ESGR are smaller than SGR. Actually it is difficult to define 

the most unstable wave from PESGR because the small phase speed dominates the 

transformation. The SGR curve has narrower shape than ESGR. In the upper panel, 

we see that the wavenumbers of the most unstable waves from both theories are 

almost the same. 

There seems no clear correlation between SGR and PESGR in Figure 2.15, 

because when the mean flow is slow, the transformation from temporal growth rate 

to PESGR is dominated by large variation of phase speed instead of that of growth 

rate itself. When the mean flow increases, relative differences among SGR,ESGR and 

PESGR decrease (comparing Figure 2.15 with 2.16). 

Figure 2.17 shows a case where SGR is the largest among the three types of 

growth rates for the most unstable waves. 
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Figure 2.16:  Temporal and Spatial, Ux = 3,U2 = 2.2, ß = 0.05 
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Figure 2.17: Temporal and Spatial, Ul = 1,U2 = 0.2, ß = 0 
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In Figure 2.18, the growth rates have decreased due to larger ß (0.13). SGR 

has been reduced by a factor of 6 in comparison with that in Figure 2.15. However the 

differences between SGR and ESGR are almost the same in the two figures (ESGR is 

about 25% smaller than SGR). To see this more clearly, we keep increasing ß until it 

completely stabilizes the flow, and plot the ratio of ESGR to SGR vs beta in the lower 

panel of Figure 2.19. From the figure, we can see that the ratio of difference (25%) is 

almost constant when beta (or maximum growth rate) increases. Also shown in the 

lower panel is the ratio of PESGR/SGR, which departs widely from 1 when beta is 

large. In the upper panel of Figure 2.19, we see that the real parts of wavenumbers 

corresponding to most temporally and spatially unstable waves are very close. 

If we increase the mean velocities of basic flow without changing the shear, 

ESGR will approach SGR (compare Figure 2.15 with Figure 2.16). This can be best 

seen in the lower panel in Figure 2.20, where ESGR/SGR increases from 0.73 to 0.98 

when Umean varies from 1/3 to 2. Umean is the average of Ux and U2 weighted 

by layer depths. This suggests an additional condition on Gaster's transformation 

formula—the mean flow or the group velocity needs to be fast for it to be valid. 

Also shown in the lower panel is the ratio of PESGR/SGR, which decreases from 

1.35 to 1.12 when Umean varies from 1/3 to 2, and it does not converge to 1 as fast 

as the ratio of ESGR/SGR. In the upper panel, again we see that the difference in 

wavenumbers corresponding to most temporally and spatially unstable waves is very 

small. 

The lower panel of Figure 2.21 shows how ESGR/SGR and PESGR/SGR 

vary with velocity shear between the top and bottom layers. When the shear in- 

creases, ESGR/SGR decreases and departs further away from 1, while PESGR/SGR 

also decreases but towards 1. From the upper panel, we see that the difference 

in wavenumbers corresponding to most temporally and spatially unstable waves in- 

creases slowly with shear. 
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Figure 2.18: Temporal and Spatial, Ux = 1,U2 = 0.2, ß = 0.13 

61 



1.1 

1 

0.9 

£ 0.8 

0.7 

0.6 

0.5 
0 

Krmax/Krmax_sp 

Krmax_sp 

0.02 0.04 

Krmax 

0.06 0.08 
Beta 

0.1 0.12 0.14 

0.02 0.04 0.06 0.08 
Beta 

0.12 0.14 
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In summary, smaller growth rates do not guarantee that ESGR gets closer 

to SGR. The mean flow or the group velocity needs to be large enough for G aster's 

transformation formula to work accurately. When the mean flow is slow, PESGR can 

depart far away from SGR while ESGR seems to be close to SGR within a bound of 

30%. Small shear helps to keep ESGR close to SGR, while large shear acts to keep 

PESGR close to SGR. Real parts of wavenumbers (or wavelengths) corresponding to 

most temporally and spatially unstable waves are comparable and not sensitive to 

mean velocities, velocity shear and ß. 

When the system is continuously forced or only disturbed by a single pulse, 

which of the three types of instabilities is most relevant needs to be determined. The 

numerical experiments in the next section address this issue. 

2.5     Numerical Experiments 

In order to test which type of theory is most suitable for a particular sit- 

uation, a number of experiments have been done in a two-layer spectral numerical 

model. To derive the governing equation of the model, we separate Equation (2.2.1) 

into a uniform and purely zonal basic flow Un with stream function *„(T/) and a 

disturbance stream ipn, 

ipn = *n(j/) + <f>n(x,y, t) (2.5.15) 

leading to 

[5i+ U"TJI" + rJ"ä-yU" + [TJ"Tv
q" - ei*"*** = °        (2'5'16) 

where qn is the perturbation potential vorticity, 

qn = VVn - i^(-iro2 - <ßi) (2.5.17) 
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and ^-IIn is the potential vorticity gradient of the basic state, 

|-nn = ß- -f-2Un - F^-inUt - U2) (2.5.18) 
oy oy2 

Linearizing and adding forcing gives 

[jt + Un^}qn + |^n^nn = F(x, 0 = Gn(x)f(t) (2.5.19) 

-K = 0       y = 0,Ly 

with lateral boundary conditions, 

d_ 

dx 

The forcing is introduced at a particular location x0 with Gaussian distribution 

Gn(x) = Ane"(x"Xo) /L/ in a small region and time dependence f(t) = sin(u>ft). 

The forcing scale Lf and frequency u; can be varied. Only the gravest mode in y 

direction was retained in the experiments. 

Pulse Disturbance 

In the experiments concerning evolution of a pulse disturbance, I set F(x, t) 

in Equation (2.5.19) to be 0 and <ßn = Gn(x) = An e~^-^l^s at t = 0. Ax is chosen 

to be 2A2 and is offset by 1 Rossby deformation radius to the west arbitrarily, i.e., 

Xl = x2 - 1. Lf is 0.6. The upper panel in Figure 2.22 shows the initial condition. 

The x axis was labeled with positions of grid points. The lower panel shows a general 

picture of the developed disturbance after some time. 

Figure 2.23 shows the amplitudes of disturbances at a particular point. Solid 

and dashed curve are values of the stream functions at the specified point in the upper 

and lower layers, respectively. Whether the system is absolutely or convectively un- 

stable becomes clear after the peak of envelope pass that point. The upper and lower 

panels are from two separate numerical runs to show the difference between abso- 

lute and convective instabilities. The upper panel corresponds to absolute instability, 

while the lower one displays convective instability. 
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and lower layers respectively. 
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Figure 2.23: Value of if> vs. time at a specified point. The upper and lower panels are from two 

separate numerical runs to show the difference between absolute and convective instabilities. Upper 

panel: absolute instability; Lower panel: convective instability. 
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Figure 2.24 demonstrates how to calculate the growth rate of a wave en- 

velope. Panel a shows a well developed wave packet at time t. The envelope is 

determined by picking out the crests and troughs and using spline method to inter- 

polate the amplitudes of the disturbance between crests and between troughs. These 

amplitudes form the envelope of a wave packet. We then rescale the horizontal coor- 

dinate by t and transform panel a to panel b. The coordinate in panel b is Cg = -. 

Panel c shows the wave packet at t + 1. Again, we transform the envelope in panel 

c to panel d (outer envelope) by rescale the x axis. The coordinate in panel d is 

Cg — ~. Panel d also draws the envelope from panel b (inner envelope) for direct 

comparison. From panel d, we calculate the growth rate of the envelope for each Cg 

from the amplitudes of the two envelopes. The growth rate is then plotted in panel 

e. 

We can follow the similar procedure to calculate growth rates of individual 

peaks, as shown in Figure 2.25. In panel a-d, the dots mark individual crests and 

troughs in the wave packet. The rescaling procedure is the same as described above 

for the calculation of the envelope growth. First convert wave packets at time t and 

t + 1 (panel a and c) from x coordinates into group velocity coordinates (panel b and 

d). In panel d, the corresponding peaks at t and t +1 are connected by solid lines. We 

then measure the amplitude difference of each pair and divide it by the time step to 

get the growth rate of each peak. The growth rates of individual peaks are then plot 

in panel e with '*'s. Note that near the both edges of the wave packet, the amplitudes 

of waves are small compared to the maximum of the envelope (panel d), so that the 

relative error in the measured amplitudes near both edges may be larger than that 

near the center of the packet due to numerical noises. Therefore the resulting error 

in the growth rates of peaks near the edges may be larger than that near the center. 

'*'s in the upper panel of Figure 2.26 show such determined growth rates of 

individual peaks from a numerical run.   Also drawn in the panel is the growth rate 
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Figure 2.24:  Demonstration: how the growth rate of the envelope is calculated in a numerical run. 
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of an individual peak (dark dashed curve) from an analytical model with the same 

parameters. 

In the lower panel, solid curve indicates the growth rate of the envelope by 

the method demonstrated in Figure 2.24. Dashed curve represents the growth rate of 

the envelope from analytical model with the same parameters. 

The growth rates from numerical models are slightly lower than their ana- 

lytical counterparts; for example, the maximum growth rate of the envelope in the 

numerical run is 4.5% lower than that in analytical model. However, if we subtract 

Yt from the latter, the correction term in Equation (2.3.14), the difference is then 

only 0.17%. Hence the correction term is responsible for 96% of the discrepancy 

in growth rates of the most unstable waves between the numerical and analytical 

models. Moreover, the discrepancy seems fairly uniform over a large range of Cg in 

the middle and is somewhat irregular near both ends of the group velocity range. 

There are two plausible reasons; the first is that in the leading and trailing edges, 

the numerical noise may be more significant because of small wave amplitudes there. 

The second is that the asymptotic solution may break down when group velocity is 

near its maximum or minimum point, as discussed in Section 2.3.3. This is less likely 

than the first reason because the irregularity in the discrepancy is mainly due to the 

irregularity in the numerical curve. 

In the derivation of the growth rate of the envelope in Section 2.3.3, I have 

assumed that when u>(k) have branch points, we can avoid going around these points 

in some way when we integrate to get asymptotic solution. It is difficult to prove 

this assumption mathematically. However, the reasonable agreement with numerical 

results demonstrates that this is a sensible assumption. 

Comparing the upper and lower panels in Figure 2.26, we again see that 

wave in the leading edge can grow much faster than the maximum of the envelope 
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and waves behind the maximum of the envelope grow slower than the corresponding 

envelope. The relative position of an individual peak to the maximum of the envelope 

determines its growth rate and other properties such as wavenumber and frequency. 

The upper and lower panels of Figure 2.27 show the corresponding wavenum- 

ber and frequency from both numerical and analytical models, and they also seem 

to agree very well except slight discrepancies at the low group velocity end, probably 

for the same reasons mentioned above. The wavenumber is estimated via the half 

wavelength, which is calculated by measuring the positions of an adjacent crest and 

trough and the value is assigned to the average position of the two points. 

When a single pulse evolves as pulse instability predicts, each component of 

a specific wavenumber in energy spectrum still grows according to the growth rate 

of temporal instability. This is naturally true mathematically. However I emphasize 

it here for future reference by a demonstration in Figure 2.28, which compares the 

growth rate of each component measured in a numerical run (marked with 'x') and 

the growth rate calculated from temporal instability theory (solid curve). Therefore 

when pulse instability occurs, the most energetic wave is the most temporally unstable 

wave. 

In preparation of comparison with observations in Chapter 4, I have also 

performed 2D spectral analysis on the above numerical run. The purpose is to demon- 

strate that the most energetic wave picked by 2D spectral analysis is the temporally 

most unstable wave. I took the stream function in the upper layer, which is a func- 

tion of both position x and time t and transformed it into wavenumber and frequency 

domain by 2D FFT. Figure 2.29 shows the energy spectrum of such an analysis. The 

most energetic wave from the spectrum has a wavenumber of 0.583 and a frequency 

of 0.181, while the most unstable wave from analytical model has üJ = 0.580 and 

k = 0.179. The discrepancies in the wavenumber and frequency are already smaller 

than the minimum wavenumber and frequency the 2D spectral analysis can resolve, 
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because of the finite length of time series and the finite model domain. Hence we 

conclude that in the case of the pulse instability, the most energetic wave, picked 

from 2D spectral analysis, is the temporally most unstable wave within the analysis 

error. 

2.5.1     Single frequency forcing 

When a system is continuously forced at constant frequency, a spatial insta- 

bility is expected to happen. Only when the forcing frequency is within the unstable 

range predicted by spatial instability theory, can the system be spatially unstable. 

When the forcing is out of the spatially unstable range, only the initial peak of the 

77 



1 

0.9 

0.8 

0.7 

t/3 

•Je 0.6 

2 0.5 
cn 

7ö 

""5 0.4 
Q. (/) 

0.3 

0.2 

0.1 

0 

spurious root 

forcing freque(icy=0.33 

0 0.1 0.2 0.3 0.4 
real frequency Wr 

0.5 

Figure 2.30:  Spatial growth rate and equivalent spatial growth rate, i7i = 1.3,*72 = 0.5, ß - 0.05. 

'*' indicates the numerical result, vertical dashed line shows the forcing frequency. 

disturbance can grow convectively as pulse instability theory predicts.   Behind the 

initial peak, destructive interaction between pulses prevents growth of perturbation. 

As we can see from Figure 2.30 or Figure 2.15, the spatially unstable range 

is narrower than temporally unstable range. This means that when the system is 

forced continuously at a frequency within the temporal instability range but out of 

spatial instability range, other types of instability such as convective instability will 

occur instead of spatial instability. 

When spatial instability happens, the amplitude at a particular point be- 

comes constant. The spatial growth rate can be determined by measuring amplitudes 

at two points.   As an example, for the parameters shown in Figure 2.30 (Ux = 1.3, 
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U2 = 0.5, ß = 0.05), a continuous forcing was introduced with a constant frequency 

0.33, the spatial growth rate measured from numerical run is 0.1257, which is marked 

with '*' in Figure 2.30, while spatial instability theory predicted a growth rate of 

0.1262 (0.4% higher) and the temporal instability theory yielded an equivalent spa- 

tial growth rate of 0.1154 (8.2% lower). So the numerical spatial growth rate agrees 

well with spatial instability theory as expected when the system is continuously forced 

at constant frequency. Note that the other analytical root with large spatial growth 

rate identified as spurious solution by Briggs' rule (see Section 2.3.2) indeed does not 

show up in the numerical experiment. 

2.6     Summary 

The first part of this chapter has introduced basic concepts of temporal, 

spatial, pulse, absolute and convective instabilities which have already appeared in 

the literature. The calculations herein are similar to others but show all three kinds 

of instabilities using the same model and parameter values. I will summarize in the 

following subsections the results from the literature and from this work which are 

most relevant to the further work in the later chapters. 

2.6.1     Temporal Instability 

Briggs (1964) proved that for any system to support unstable waves, its 

dispersion equation must yield complex solutions with positive imaginary parts for 

some real k, i.e. it is a necessary condition for any unstable waves. This implies that 

spatial and pulse instabilities only occur when temporal instability also occurs. 
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2.6.2     Spatial Instability 

Briggs also shows that not all solutions with the right sign for spatial in- 

stability are growing waves. We need to apply Briggs criterion (described in Section 

2.3) to distinguish real growing waves from other solutions with the same sign. I have 

used the criterion to say that implication in Hogg's (1976) work that spatial insta- 

bility does not require potential vorticity gradients to change sign is not legitimate. 

In addition, I have shown that the purely spatially unstable wave Hogg considered is 

really better thought of as neutral because its phase speed is real. Hence one of his 

conclusions, that spatially growing waves are bounded by a low wavenumber cut-off 

which separates them from the temporally growing waves, is not valid. That conclu- 

sion has been drawn based on nonzero c although he focuses on the limit of zero c in 

his study and it is not clear whether or not c = 0 also corresponds to a neutral wave. 

Michalke (1965) first studied the difference between spatial growth rate 

(SGR) and pseudo-equivalent spatial growth rate (PESGR). He found that PESGR 

was 17% smaller than SGR in a barotropic flow with a hyperbolic tangent velocity 

profile. In this chapter, I have made comparisons among SGR, PESGR and ESGR 

(the equivalent spatial growth rate) and examined the validity of Gaster's formula in 

the Phillips model. 

Spatial instability theory gives different and generally larger spatial growth 

rates than the equivalent spatial growth rate (ESGR) transformed from temporal 

instability with Gaster's formula, especially when growth rate is large and group 

velocity is small. Smaller growth rates do not guarantee that ESGR gets closer to 

SGR. 

The mean flow or the group velocity needs to be large enough for Gaster's 

transformation formula to work accurately. When the mean flow is slow, PESGR can 
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depart far away from SGR while ESGR seems to be close to SGR within a bound of 

30%. Small shear helps to keep ESGR close to SGR. 

Real parts of wavenumbers (or wavelengths) corresponding to most tempo- 

rally and spatially unstable waves are comparable and not sensitive to mean velocities, 

velocity shear and ß. 

2.6.3     Pulse Instability 

The maximum of the envelope of the growing disturbance moves at group 

velocity of the most temporally unstable wave, and grows at the rate of the same 

wave. The growth rate of an individual peak depends on the location of the peak 

relative to the maximum of the envelope. Given Cg > Cph, individual peaks behind 

the maximum of the envelope grow at a rate smaller than o>;max. At the leading edge, 

individual peaks can grow much faster than the peak of the envelope, which makes 

the envelope move faster than the individual peaks. These general results were first 

found by Simmons and Hoskins (1979) in atmospheric observation. The formula of 

growth rate of an individual peak was also given in the paper without a mathematical 

derivation. In this chapter, I have provided a detailed theoretical derivation of the 

formula and focused on the behaviors of individual peaks. In particular, when the 

growth rate of an individual peak is plotted as a function of its amplitude, it decreases 

as the amplitude increases. It has been demonstrated in this work that the relation 

between the growth rate of an individual peak and its amplitude is an intrinsic prop- 

erty and an important feature of pulse instability. Thus if one follows a single peak 

and notices a decrease in the growth rate, one cannot infer that increasing amplitude 

(or nonlinearity) was responsible for reducing the growth rate. 

Direct comparison between temporal and pulse theory in this chapter shows 

that pulse instability allows unstable waves to have wavenumbers beyond the short 
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wave cut-off of the temporal theory. This is reasonable because we are comparing the 

real part of the local wavenumber in pulse theory with global wavenumber in temporal 

theory. The local wavenumber in pulse theory contains a nonzero imaginary part, so 

that even if its real part is the same as the wavenumber in temporal theory, its 

frequency u>(kr + iki) has been extended to complex k plane and is naturally different 

from that in temporal theory (w(kr)). 

When a single pulse evolves as pulse instability predicts, each component of 

a specific wavenumber in energy spectrum still grows according to the growth rate 

of temporal instability. Therefore when pulse instability occurs, the most energetic 

wave is the most temporally unstable wave. 
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Chapter 3 

The Instabilities of the Gulf 
Stream—QG Models 

3.1     Motivation 

From the two-layer model discussed in the last chapter, we have already 

seen that there can be significant differences between temporal, pulse and spatial 

instabilities, and Gaster's transformation formula is valid only when a spatial growth 

rate is small and the group velocity is large. In order to answer the question whether 

Gaster's formula and the other transformation formulae commonly used hold well in 

the context of the Gulf Stream, we have to consider models more realistic than the 

two-layer uniform velocity model we have studied. 

There are several ways we can improve the model used in the last chapter. 

First, a jet structure in the basic state may have significant effect on the instabilities. 

Second, topography is expected to modify instabilities in some ways (Orlanski, 1969). 

Third, we want to know the effect of additional layers or more detailed stratification. 

Fourth, it is more reasonable to use a shallow water model than a QG model because 

the slopes of isopycnals and topography and the Rossby number are large in the 

context of the Gulf Stream. 

In this chapter, we first consider a six-layer QG model with a jet structure 

basic flow and with relatively realistic topography. We then proceed to compare the 

six-layer QG model with two to five-layer models to examine the effect of vertical 

resolution. Our study shows that a minimum of three layers is necessary to properly 

address the effect of topography and at least five layers are required to capture the 
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rapid change in velocity profile (see Section 3.3). Hence a six-layer model is desirable 

in this regard. 

The variations in topography and thicknesses of layers between isopycnals 

in the Gulf Stream are large enough that the conditions for QG theory to be formally 

valid are violated. In the next chapter, I will examine a shallow water model with 

the same topography and jet structure to determine how the predictions of the QG 

model are changed. 
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3.2     Model Description 

We will use two to six layer quasi-geostrophic inviscid channel models in this 

chapter. These models are identical in dynamics except for the different number of 

layers and can be classified as a multiple layer model. The stream function in each 

layer is independent of depth. Let n=l indicate the top layer, and n=N the bottom 

one. Based on layer models described in Pedlosky (1986, Sec. 6.16), the equations of 

motion for a N layer model can be written 

{|- + |-V'i|--|-V'i|-}{V2Vi    -    *i,o(tfi-^)+/?v} = 0   (3.2.1a) 
ot     ox     oy     oy     ox 
r\ r\ r\ r\ r\ 

Ot     ox     oy     oy     Ox 

+Fn,n{il>n+1-xl>n)   +   ßy} = 0,    Kn<N      (3.2.1b) 

{är + ä-^ä-- -ä-Vwö-}{VVw   -   FN„ltN(ipN-ipN„1) + 
ot     ox      oy     oy      ox 

+ßy + foVB/HN} = 0 (3.2.1c) 

where ß is the gradient of planetary vorticity and TJB the topography. Fs are Froude 

numbers, 

■*- m..n 
emgHn 

where f0 is Coriolis force at 38°N, em the nondimensional density jump between m-th 

and (m+l)-th layers and Hn the depth of n-th layer. L is the length scale. F0ii and 

FN,N are defined to be 0. 

The standard linear instability theory for a basic state with zonal flows Un(y) 

and perturbations <f>n = Re(<f>n(y) e
lk(x~ct)} gives the eigenvalue problem 

(17! - c)    [gr*x    -k2 $! - Fli0(*i - $2)] + $1 ^nx = 0 (3.2.2a) 

(Un - C)     [gr$n     -k2 $n + Fn_!,n($n-! - *n) + Fn,n($n+1 - $„)] + 
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+$n|-nn = 0,        1< n < N (3.2.2b) 
dy 

(UN-C)     {^$N     -k2 §N - FN^N{$N - *AT-l)] + $^^n^   =   °    (3-2-2c) 

with the boundary condition 

$n = 0,    y = 0,Lv,       n = l,...,N (3.2.3) 

where J^IIn is the potential vorticity gradient of the basic state, 

I-Ü!   =   ß - ^Ur - Flfi{U2 - UJ (3.2.4a) 
öy ay2 

|-nn    =    ß - ^Un - Fn-i^Un-! - Un) - F^Urt - Un)       (3.2.4b) 
dy <9y2 

l-Hjv   =   ß-^UN-FN^tN(UN^~UN) + ßB (3.2.4c) 
<9y ay2 

and ßß is the bottom topographic ß parameter, fog^VB/'H^ ■ 

A finite difference method has been used to solve this linear eigenvalue prob- 

lem. Discretization renders the problem a matrix equation, which can be solved di- 

rectly for temporal instability by standard procedures. I have developed a code based 

on a method introduced by Lin and Pierrehumbert (1993), the saddle point finder (see 

Appendix A), to solve the dispersion equation in the complex (w, k) plane for pulse 

instability. Solving for spatial instability requires mapping of dispersion relation on 

complex k plane, and the method is described in Appendix B. 

In all the models we will use, the channel width is fixed at 320km and reso- 

lution 10km except where otherwise specified. The effects of resolution and channel 

width are tested in Appendix C. 
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3.3     Basic Flow and Parameter Calibration in Mul- 
tilayer Models 

The same set of CTD data mentioned above (Hall and Fofonoff, 1993) has 

been used to calculate the density field, the stratification profiles, and the geostrophic 

velocity field. We then determine the depth of each layer in layer models based on 

potential density analysis. And after the depth of each layer in a layer model has 

been calibrated, the geostrophic background velocity is averaged over the depth of 

each layer. The layer-averaged velocity field is then interpolated into the grid points. 

We assume a zonal basic flow in our model. 

In order to determine the depth of each layer in layer model appropriately, we 

first look at potential density field. Figure 3.1 shows the contours of potential density 

field across the stream at 68°W. The contours pass the center of the jet (38°N) at 

depths of 500,700,1100 meters, etc, which are labeled in the figure for convenient 

identification.   The interval is 400m in the interior and 200m near the top and the 

bottom.   From the figure, we can see that the thickness between contours increases 

towards North in the interior and decreases near the top and bottom.   To see this 

feature more clearly, we calculate a spread ratio between every two contours.   The 

spread ratio is defined as 
_  hx - h2 

b ~        h 

The thicknesses hi and /&2 are measured at 90km and 80km away from the jet center 

respectively (indicated by the dotted lines in Figure 3.1), where isopycnals start to 

level off. h is the thickness between the two contours at the jet center. The spread ra- 

tio is the percentage change in the thickness between the two contours and it captures 

the part of the potential vorticity gradient purely due to the depth change. 

In Figure 3.2, '*' indicates the spread ratios for layers between each pair of 

potential density contours.   The solid line separates the positive spread ratios from 
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Figure 3.1:  Potential density contours across the stream. 
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negative ones. In general, the spread ratios are negative in the interior except two 

layers with slightly positive values. The layers with the largest spread ratios appear 

near the surface (above 700m) and the bottom (below 3500m). This suggests that we 

need an interface to separate the top layer and another one to separate the bottom 

layer from the interior if we want to capture the dynamics of the Gulf Stream properly. 

If we use two-layer model to represent the Gulf Stream and put the only 

interface at the thermocline, the effect of topography will penetrate through the whole 

bottom layer. To see this more clearly, we calculate the spread ratio in the lower layer 

between thermocline and the bottom. The spread ratio in the lower layer is positive 

(9.5m/100m) as indicated by dashed line in Figure 3.3, while the average spread ratio 

in the interior is negative (-8.4m/100m, dotted line; the length of the line covers the 

depth range of averaging). Hence the spread ratio in the lower layer bounded by the 

thermocline and the topography does not reflect the real situation and using a two- 

layer model in the context may alter the characteristics of the instability concerned. 

If we use flat bottom instead of the real topography, the spread ratio (25.0m/100m, 

dash-dotted line) in the bottom layer triples the average spread ratio in the interior. 

So neither form of the two-layer model will take the topographic effect into account 

properly. In Chapter 5, I will use a slope which is less than the true value to capture 

interior spread ratio better, but this model still cannot represent the change in sign 

occurring below 3500 meter. 

Since the CTD data I used was only a snapshot of the Gulf Stream, I have 

included in Figure 3.4 a temperature contour plot from Leaman, et al (1989). The 

contours represent a multiyear average of temperature, obtained using PEGASUS cur- 

rent profilers off Cape Hatteras. Estimated directly from plot, the thickness between 

3°C and 5°C changes from 1570m at the Southern edge to 1900m at the Northern 

edge, leading to an interior spread ratio of (-9.5m/100m). This is comparable to the 

interior spread ratio (-8.4m/100m) from the CTD section I used. If we use a two-layer 
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model to represent the system and put the only interface in thermocline, for example, 

along 10°C contour, the spread ratio below the interface will be positive (10m/100m) 

because of the large bottom slope. Hence a minimum of three layers is also necessary 

in this case. 

We will use real topography with a little modification because our model 

cannot deal with the intersection of topography with a layer interface. In Figure 3.5, 

V represents where CTD stopped, typically a few meters above the bottom, '*' the 

topography we have chosen to use. At about 50km south of the jet, we have modified 

the topography slightly to smooth out a small scale bump which is very unlikely to 

affect large scale dynamics. At the southern edge, the topography is made fiat. This 

is expected not to affect the dynamics significantly and the position of the station is 

actually beyond our model domain (320km in width). The dashed curve (overlapped 

in part by solid curve) is the topography we actually used in all experiments when the 

'real topography' is claimed, and has constant slope beyond 87km from the center 

of jet. The difference in using such topography and the topography indicated by 

the solid curve is demonstrated in Figure 3.6, where solid curves represent the result 

corresponding to the topography identified by solid curve in Figure 3.5 and dashed 

curves to that identified by dark dashed curve Figure 3.5. In the experiment, I used a 

three-layer model with lowest interface at 3000m. The differences are almost invisible, 

suggesting that the effect of topography far away from the jet is small. 

In all the models, the first interface is set at 660 meters at the core of the 

stream, and the lowest one at 3500 meters except for the two-layer model, as suggested 

by our potential density analysis. The six-layer model has three additional interfaces 

at 1370, 2080, and 2790 meters so that the thickness between the first and the lowest 

interfaces are equally divided. We have chosen the additional interface in the four- 

layer model at 1800 meters so that the model best matches the results of the six-layer 

model.   In the five-layer model, the two additional interfaces are at 1370 and 2370 
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Figure 3.4:  Contours of average temperature off Cape Hatteras. From Leaman, et al (1989). 

meters. In all models, the topography is the modified "real topography" defined in 

the previous paragraph. 

After we have determined the depth of each layer in multilayer models, we 

then take average of the geostrophic velocity over the depth of each layer. Taking 

the six-layer model as an example, we show the layer-averaged velocity structure in 

Figure 3.7 (narrow lines). There are six velocity profiles corresponding to six layers 

in the model. The maximum velocity in each layer decreases with the depth of the 

layer. We then fit the velocity structure in each layer with Gaussian type profile. The 

magnitude and width of the jet in each layer are determined by the magnitude and 

transport of the unsmoothed jet in the layer. The fitted profiles are also shown in 

Figure 3.7 (dark lines). 
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Figure 3.6:  Solid curves represent the result corresponding to the topography identified by solid 

curve in Figure 3.5 and dark dashed curves to that identified by dashed curve in Figure 3.5. 

95 



0.5 0        -0.5 
South-North Distance (100km) 

-2 

Figure 3.7: Velocity profiles in each layer of a six-layer model, the maximum velocity in each layer 

decrease with the depth of the layer. Narrow and dark curves: velocity profiles before and after 

fitting, respectively. 
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3.4     Comparison Among Multilayer Models 

Figure 3.8 shows the results of temporal instabilities corresponding to models 

with different number of layers. The upper panel shows phase speeds vs wavenumber, 

while the lower one shows temporal growth rate. For clarity, only the main unstable 

mode in each model is plotted and labeled with its corresponding number of layers. 

As we can see in Figure 3.8, as the number of layers increases, the results tend 

to converge. In particular, the wavenumbers of the most stable waves are comparable 

except that in the two-layer model. The two-layer model gives a very different result 

in terms of the shape of the curve, maximum growth rate and wavenumber of the 

most unstable wave. The agreement among other models is worst on short wave side 

of the most unstable waves. In addition, when we plot more modes for four to six- 

layer model in Figure 3.9, we see the curves on short wave side have not converged 

as much as on long wave side when the number of layers increases. 

Figure 3.10 is the pulse instability version of the comparison. The 'x' mark 

on each curve indicates the value at the peak of the envelope of a developed distur- 

bance. Again we see the similar pattern that when the number of layer increases: 

the results tend to converge. However, some features here are more sensitive to the 

number of layers than in the case of temporal instability. Besides the ill-behaved 

two-layer model, the three-layer model has the opposite trend in term of wavenumber 

or frequency as a function of group velocity and the curve of the growth rate does 

not compare well with the four to six-layer models. This demonstrates that pulse 

instability is more sensitive to vertical resolution than temporal instability. This is 

probably because we need to use the group velocity as a variable in the pulse instabil- 

ity instead of wavenumber. Since a group velocity depends on the derivative of phase 

speed with respect to wavenumber, any inaccuracy in phase speed or wavenumber 

will be amplified in group velocity.   So when we study pulse instability, we need to 
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Figure 3.8: Temporal instabilities corresponding to models with different number of layers. Curves 

are labeled with their corresponding numbers of layers. 
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Figure 3.9:  Temporal instabilities: comparison among four, five and six-layer models. Curves 
labeled with their corresponding numbers of layers. 
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use higher vertical and horizontal resolutions, especially near the surface and the core 

of the jet where the mean velocity changes rapidly. 

From the above comparison, it appears that a six-layer model is appropriate 

in study of the Gulf Stream instability, especially for the main unstable mode. Hence 

we will focus on the analysis of a six-layer model in the next section. 

3.5    Temporal, Spatial and Pulse Instabilities in a 
Six-Layer Model 

Figure 3.11 redraws the three most unstable modes of temporal instability 

in the six-layer model. The most unstable wave (at the peak of the mode) has a 

wavelength of about 350km, a period of 44 days and a growth rate of 0.063/day. 

The growth rate corresponds to an e-folding time of 16 days. These results will be 

compared with observational analysis by Lee and Cornillon (1996b) in Chapter 4. 

The other two modes have growth rates of .026 and .023/day respectively, which are 

less than 50% of the first mode. 

Figure 3.12 compares spatial growth rates (SGR) with equivalent spatial 

growth rates (ESGR) and pseudo-equivalent spatial growth rates (PESGR) for the 

three most unstable modes. The bumps on the SGR curve look peculiar and will 

be discussed later. The vertical lines indicate the real parts of the frequencies at 

the peaks of temporal unstable modes. The corresponding periods are also labeled. 

As I described in Chapter 2, SGR is calculated through dispersion equations with 

real frequency. Both ESGR and PESGR, estimates of SGR, are calculated from the 

temporal growth rates divided by group velocity and phase speed respectively. 

For the most unstable mode, the maximum SGR exceeds by 32% ESGR 

predicted from the temporal instability at the most unstable wavenumber. Dominated 
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Figure 3.11: The three most unstable modes from temporal instability in the six-layer model. 
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Figure 3.12:  Comparison between temporal and spatial instabilities in the six-layer model. 
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by the small group velocity in transformation, however, the ESGR curve peaks at 

o;=0.04, which corresponds to a period of 160 days.The maximum SGR is at o;=0.14 

(52 days), while the most temporally unstable wave is at a>r=0.164 (44 days). 

For all of the three modes, ESGRs are closer to SGRs than PESGRs are, 

especially at low frequency where PESGR almost triples SGR. This suggests that 

ESGR is a better estimate of SGR than PESGR, 

The upper panel of Figure 3.12 shows group velocities and real wavenumbers 

of the three modes. Group velocities have been calculated from temporal instability. 

The solid curves are real wavenumbers calculated from spatial instability, while the 

dashed curves temporal instability. The wavenumbers from both instability theories 

are actually very close, especially right at the peaks. 

I now return to discuss the strange bumps on the SGR curve. They are 

plausibly due to multiple roots merging together. In this model, there are 186 grid 

points. The model gives 186 roots of u when k is given and 558 roots of k when u> is 

given. It is possible that some of these roots merge together to form a mode with such 

bumps. Figure 3.13 redraws the first mode of spatial instability (the solid curve with 

a larger maximum growth rate) from Figure 3.12 and an additional mode labeled as 

pinch-off mode. (The dashed curve will be explained in the next paragraph.) For 

convenience I call the first mode as a merger mode. Near u>r = 0.21, it seems that the 

merger mode has be formed by connecting the upper parts of two roots which could 

have been separate for some parameter range, whereas the pinch-off mode has been 

formed by connecting the lower parts of the two roots. 

These bumps in the first mode are very sensitive to the strength of the mean 

flow. To see this more clearly, I have added a uniform barotropic flow of 0.02m/s to 

the velocity profile shown in Figure 3.7, and compute the spatial growth rate with 

the same model. The dashed curve in Figure 3.13 shows the first mode of the spatial 
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Figure 3.13: Comparison of spatial instabilities between the six-layer models with and without 

an additional uniform barotropic flow of 0.02m/s. The solid curves represent the former case and 
dashed the latter. 

instability. We see that the bumps in this case have been smoothed substantially 

by the weak additional barotropic flow. This is probably because the additional 

barotropic flow has changed the structure of the roots significantly so that the way 

they intersect, merge or overlap has become much smoother. 

Figure 3.14 shows pulse instability for the three most unstable waves. The 

upper and lower panel display the growth rates of individual peaks and the envelopes 

respectively, as functions of the group velocity. The growth rate of an individual peak 

is calculated from Equation 2.3.13, which is 

"zpeak  =  Vi{Cg) + {Cph - Cg) 
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The 'x' mark on each curve indicates the maximum of the envelope, whereas the 

dark 'x' mark represents where an individual peak grows fastest among all waves 

corresponding to the same mode. 

From Figure 3.14, again we see the similar feature as in Phillips' model: 

the growth rate of an individual peak closely depends on its position relative to the 

peak of the envelope and can be very different from that of the envelope. The ratios 

of the growth rates of the fastest growing waves to the maximum growth rates of 

the envelopes are 2.39, 3.67 and 2.07 for the first three modes, whereas it is 1.78 in 

Phillips' model. So the feature is stronger in this Gulf Stream model. 

Figure 3.15 shows the wavenumbers and frequencies of the first three modes. 

The 'x' and dark 'x' marks indicates the most unstable waves (the maximum of the 

envelope growth) and the fastest growing waves. Over a large range (Cg from .15 to 

.60m/s), the first and second modes have the same sloping trends of wavenumbers 

and frequencies, similar to the trends in Phillips' model, whereas the third mode has 

the opposite trends. Since the growth rate of first mode is dominant over the others, 

this model suggests that the fastest growing waves should have shorter and higher 

frequency than the most unstable wave in the ocean given the velocity profile. 

Figure 3.16 and Figure 3.17 show how a peak in the leading edge of the enve- 

lope evolves according to the most unstable mode in Figure 3.14. The demonstration 

has been done in the Phillips' model, but it is important to use a more realistic model 

to see whether the conclusion from Phillips' model still holds. The method has been 

described in Section 2.3.5 and will be briefly repeated here for convenience. Suppose 

a disturbance is initiated at x = 0 and t = 0. After a significant amount of time, 

the wave envelope approaches its asymptotic form of the solution. If we focus on 

an individual peak in the leading edge of the disturbance envelope, we calculate the 

values of Cg — x/t and can have vipeak and Vi for that spot from Figure 3.14. We then 

compute the amplitude and phase speed of the peak for next time step.   Repeating 

106 



0.2 0.3        0.4        0.5        0.6        0.7 
Group Velocity Cg (m/s) 

0.8 0.9 

0.18 

CD 0.16 
CL 
O 
CD 0.14 
> 
c 

LU 0.12 
CD 
T 

0 1 *+— 
Ü 

CO 
CD 0.08 
CO 
OC0.06 
s~. 
5 0.04 o \— 

CD 0.02 

0.2 0.3        0.4        0.5        0.6        0.7 
Group Velocity Cg (m/s) 

0.8 0.9 
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the procedure step by step, we collect the history of the individual peak. Figure 3.16 

and Figure 3.17 show the results of such an experiment. In Figure 3.16, growth 

rate, phase speed and wavenumber are plotted vs time, while in Figure 3.17 vs log 

of amplitude (assuming initial amplitude of 1, or scaling the amplitude by its initial 

amplitude). What we can see from the both figures is that the growth rate, phase 

speed and wavenumber of the individual peak decrease as the peak evolves. When 

the peak is on the leading edge of the envelope, its growth rate can be much larger 

than that of maximum envelope growth. The pattern is very similar in Figure 3.17. 

The growth rate of the individual peak decreases as the amplitude increases, so does 

the wavenumber. So the features appeared in Phillips' model also appear here. 

In the experiment, an individual peak in the leading edge grows as fast as 

220% the rate of the envelope growth. And when it falls in trailing edge, it grows as 

slow as 30% the rate of the envelope growth. Thus a peak in the leading edge can 

grow several times as fast as another peak in the trailing edge. In Phillips' model, 

the fastest and slowest growing individual peaks have growth rates of 178% and 80% 

of the maximum envelope growth, respectively. So the difference between the waves 

in the leading edge and slowest growing wave behind the maximum of the envelope 

is much larger here than in Phillips' model, probably due to the jet structure which 

is not present in Phillips' model. Whether such a huge difference can be realized in 

the context of the Gulf Stream will be addressed in Chapter 5, where I will use a 

numerical model with relatively realistic features of the Stream. 

3.6     Summary and Conclusions 

From the analysis of potential density and spread ratio, we have shown that 

a minimum of three layers is necessary to address the effect of topography properly. 

Comparison among two to six-layer models support this point. The comparison also 
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shows that short waves are more sensitive to vertical resolution. In the case of pulse 

instability, a minimum of five layers is necessary to capture the characteristics of the 

instability. 

Spatial Growth Rate (SGR) is generally larger by about 30% than Equivalent 

Spatial Growth Rate (ESGR) converted from temporal instability. Pseudo-Spatial 

Growth Rate exceeds SGR by 200% at low frequency and is not a good estimate of 

SGR in general. 

In the case of pulse instability, the growth rate of an individual peak can 

be very different from that of wave envelope. If the initial disturbance is a single 

pulse, the growth rates of individual peaks can vary from 30% to 220% of that of the 

peak of the wave envelope and cannot be predicted by temporal or spatial instability 

theories. 

To avoid repetition, we will defer comparison of our results of the QG model 

to data until the next chapter, where a shallow water model will be studied and 

compared with the QG model as well as observations. 
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Chapter 4 

Shallow-Water Models 

4.1     Motivation 

In Chapter 2 and 3, we have used QG models to study the characteristics 

of temporal, spatial and pulse instabilities.  Since QG models can only handle well 

small Rossby number and small slopes of isopycnals and topography, we need to 

examine first whether these conditions have been violated in the Gulf Stream. From 

the observations, the Rossby number was estimated to be .3-5 in the Gulf Stream 

east of Cape Hatteras(Bower, 1989). The depth of the top of the thermocline varies 

from around 800m in Southern side to about 200m in Northern side, and the depth 

of the bottom changes from about 4900m to 1900m across a CTD section at 68°W 

running from 36.3°N to 40°N (Hall and Fofonoff, 1993).   Such large changes in the 

depths of isopycnals and topography may violate the assumptions of QG theory. 

Therefore one may expect that the QG approximation is not accurate in the context 

of the Gulf Stream, and a question naturally arises whether the results obtained in 

QG models can be extended to the primitive equation model or shallow-water model. 

This chapter is devoted to the comparison between QG and Shallow-Water models 

(SW). 
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4.2     Model Description 

In this chapter, I will use a six-layer channel model. The model, however, 

has been developed for N layers as long as there is no outcropping or intersection of 

interfaces with topography. The model configuration and topography are the same 

as in the QG six-layer model used in the last chapter. The channel width is 320km 

and the boundary conditions assume no normal flow across the channel walls. 

Let n = 1 indicate the top layer, and n = N the bottom one. The equations 

of motion can be written 

n      d 
§-tun + un£un + vn^un - fvn = -£#—7,- (4.2.1a) 

§-tvn + un£vn + vngvn + fun = -Y^gi—rn (4.2.1b) 

.ti    dx 

d_ 

where un,vn, and T}n are along stream, across stream velocities, and elevations of the 

surface and the interface. The reduced gravity factors are 

Pn - Pn-l 
9n = g  

Pn 

and po is 0 by definition. 

The equations of continuity are 

dihn + dx'(hnU^ + d~(hnV^ = ° ^4'2-2^ 

with hn = Hn + r]n — rjn+1.  When n = N, 77^+1 = f}N+1 = hf,, the elevation of the 

bottom. The lateral boundary conditions are chosen to be 

vn = 0,    at y = 0,Ly (4.2.3) 

where Ly is the width of the domain. We consider the case where the basic flow only 

has an along-stream component (x-direction) and we separate physical quantities into 
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basic state fields and perturbation components, 

un=   TJn(y) + u/n(y) (4.2.4a) 

vn =   vln{y) (4.2.4b) 

Vn =     Vn(y) + V'n(y) (4.2.4c) 

hn=   hn(y) + hln(y) = Hn + (rjn-rfn+1) + (Vfn-r]fn+1) (4.2.4d) 

where T)IN+\ is defined to be 0. Hn is constant and represents the mean thickness of 

n-th layer. 

We assume the mean field is in geostrophic balance.  Given the basic state flow Un, 

the displacement of interfaces in the basic state can be determined as 

f}n = 77nO - - f(Un - Un-Jfdy (4.2.5) 

where 7?no is an integration constant and UQ is defined to be 0. 

We now substitute Equations (4.2.4a-d) into Equations (4.2.1a-b) and Equa- 

tion (4.2.2). If we study only the linear instability problem, we can neglect nonlinear 

terms in the resulting equations. For simplicity, we drop all primes and have 

unt   +Ununx + Unyvn- fvn + J29iVix = 0 (4.2.6a) 

n 

vnt    +Unvnx + fun + Y^SiViy = 0 (4.2.6b) 

N 

Vnt    + Y,i(Hi + Vi~ Vl+i)(uix + viy) + (riiy - 77(i+i)„)ut + {Ui - C/i-i)r/,x} = 0 

(4.2.6c) 

where unt means §;Un. Other similar notations can be interpreted accordingly. 
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To search for only normal mode solutions, we can assume 

(un,vn,7}n) = (ün(y),ikvn(y),r)n(y))eik{~x ct)) (4.2.7) 

Substitute Equation (4.2.7) into Equations (4.2.6a-c), drop all ' * ' signs for conve- 

nience, and we have 

Unun + (Uny - f)vn + J^diVi = cur, 
i=l 

n 

9i 
-p«n + UnVn + YJ ~7^Tliy = CVn 

i=l       k 

N 

J2{TiUi + BiVi + (Ui - Ui-Jrii} = cVn 

(4.2.8a) 

(4.2.8b) 

(4.2.8c) 

where 

Ti   =   Hi + Vi- T)i+1 

d_ 

dy 
Bi   =   Tiy + T;— 

=    (Viy ~ 77(,+i)y) + (Hi + rji - Vl+l) dy 

(4.2.9a) 

(4.2.9b) 

The lateral boundary conditions are 

vn = 0,    at y = 0, Ly (4.2.10) 

As an example, for the simplest case of two-layer model (N=2),  Equa- 

tions (4.2.8a-c) become 

Ui Uly- / 9i 0 0 0 
f 
k2 ux 

91   d 
fc2 dy 0 0 0 

Ti Bt u1 T2 B2 Ü2-Ü 
0 0 5i u2 U2y- f 92 
0 o 9i   d f Uo 92   d 

fc2 dy k2 
u 2 k2 dy 

0 0 0 T2 B2 u2 

' Ul  ' "  Ui   ' 

Vl Vl 

u2 

= c Vi 
u2 

v2 v2 

.   V2   J -   V2   . 

(4.2.11) 
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We will use a finite difference method in y with a staggered scheme to solve 

this linear eigenvalue problem. 
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4.3     Comparison of the  SW  and  QG   Six-Layer 
Models 

In the SW six-layer model, the depths of the interfaces, velocity profiles and 

topography are the same as in QG case (see Figure 3.5) and Figure 3.7). 

Figure 4.1 shows the results for temporal instabilities in the QG and SW 

six-layer models. The dashed curves represent the results of the QG six-layer model 

we have studied in the Chapter 3, and solid curves the SW six-layer model. The main 

modes from the two models are similar in wavelengths (349km in QG6 vs 363km in 

SW6) except the maximum growth rate (0.063/day) in QG model is about 40% higher 

than that in SW case (0.044/day). This agrees well with previous study by Orlansky 

(1969) who shows in a two-layer model that the growth rates and corresponding 

wave numbers of unstable modes decrease when the Rossby number increases. As we 

can see from the upper panel of Figure 4.1, the difference between the phase speeds 

of the main modes in the QG and SW model is relatively small compared to the 

difference in growth rates. As far as the main mode is concerned, there appears to 

be a quantitative difference between the QG and SW models in growth rate but no 

qualitative difference in the shape of the curve of the growth rate and the phase speed 

of the mode. 

In both models, there are two more significant modes, which have higher 

phase speeds and wavenumbers than the main modes. Numbered in the order of 

wavenumber at peak, the second mode in SW model seems to correspond to both the 

second and third modes in QG model as seen in the phase speeds. The third mode 

in SW model is not present in the QG model. 

Figure 4.2 is the pulse instability version of the comparison. As we can see 

in Figure 4.2, the characteristics of the main modes in the SW and QG models are 

comparable except that the main mode in SW model truncates at lower group velocity 
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Figure 4.1:   The results of temporal instabilities corresponding to QG and SW six-layer models. 

The solid curves represents the results of the SW model, and dashed curves the QG model. 
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Figure 4.2: The main modes of pulse instabilities corresponding to QG and SW six-layer models. 

The solid curves represents the results of the SW model, and dashed curves the QG model. 
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than the main mode in the QG model, so that the former only corresponds to the 

first part of the latter. This can be seen more clearly in Figure 4.3, which also plots 

the growth rates of individual peaks. Despite the difference in the maxima of the 

envelope growth of the main modes, the growth rates of individual peaks agree very 

well between the two models. This appears to be coincidental; the curve of individual 

peak growth in one model happens to pass very nearly through the maximum of the 

envelope growth in the other model, so the two curves agree at both of these points. 

This implies that when we compare the growth rates of individual peaks from the 

models with observations, the difference between the QG and SW models does not 

tend to show up as clearly as when we compare those of envelopes with observations. 

Figure 4.4 shows the three most unstable modes of pulse instabilities in QG 

and SW models. In the SW case, the second mode dominates the first mode when 

group velocity is greater than 0.35m/s; whereas, in the QG case, the first mode is 

strongly dominant over most of the range where the growth rates are high. Thus the 

comparison between QG and SW is more complex than Figure 4.2 might suggest. 

To determine which mode the fastest growing peak actually comes from, we need to 

compare the maximum growth rates of individual peaks in the regions where their 

corresponding envelope growth rates dominate. Figure 4.5 shows the growth rates 

of individual peaks corresponding to the three most unstable modes. The maximum 

growth rate of an individual peak from the first mode turns out to be 0.105/day at 

group velocity of 0.35m/s and period of 40 days, while that from the second mode is 

0.091/day at group velocity of 0.50m/s and period of 16 days. Moreover, the maxi- 

mum growth of an individual peak from the third mode is 0.110/day at Cg = .71m/s 

and corresponds to a period of 6 days. The maximum growth rates of individual 

peaks from the three modes are actually comparable and it is difficult to differentiate 

between them. However, because of the difference in group velocities, they will ap- 

pear at different locations and have different wavelengths, and may therefore all be 

observable. 
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Xue (1991a) also carried out similar instability analysis of the Gulf Stream on 

the South Atlantic Bight in a primitive model. She only studied temporal instability. 

The most unstable waves in her models with topography have wavelengths between 

215 and 225km and e-folding times of about 3 days. This is very different from the 

most temporally unstable wave in this model, which has a wavelength of 350km and 

an e-folding time of 23 days. This large difference is probable due to the different 

basic states and topography used in her model (intended for the Stream before Cape 

Hatteras) and mine. 

4.4     Comparisons With Observations and Conclu- 
sion 

In this section, I will draw connection between our model results and obser- 

vations, and conclude our findings in the chapter. In the comparison with observation, 

I will focus on the studies by Lee and Cornillon (1994a,b) since only their work dis- 

tinguishes the fastest growing wave from most energetic wave in a well-defined way, 

to the best of my knowledge. 

Lee and Cornillon used two-day composite sea surface temperature (SST) 

images obtained from the thermal infrared (IR) channels of the Advanced Very High 

Resolution Radiometer (AVHRR) flown on the NOAA polar-orbiting satellites. From 

these satellite images, they digitized the path of the Gulf Stream from Cape Hatteras 

(about 75°W) to 45°W. The path of the Gulf Stream is defined by the sharp SST 

gradient along the northern edge of the stream. After removing the mean position (a 

smooth curve) of a path, the positions y(x, t) of the Gulf Stream as a function of (x, t) 

were obtained. They then performed spectral analysis to find the most energetic wave 

band. They used FFT in the time-frequency transform. In the position-wavenumber 

transform, they used either FFT or autoregression method. Using the former resulted 
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in the most energetic wave of 427±70km in wavelength and 46 days in period. Using 

the latter gave the same results except that the error estimate in wavelength became 

±16km. 

The fastest growing wave was obtained by a peak tracking technique. Given 

a path of the Gulf Stream, they repeated three-point averaging a few times to get a 

heavily-averaged path. This path intersects the original path, and these intersections 

define the nodes between crests and troughs. For an individual peak, the wavelength 

associated is defined as twice of the distance between the two adjacent nodes. If the 

positions of a peak are Xi and x2, and amplitudes A\ and A2, at the time t\ and t2 

respectively, the growth rate and phase speed between t\ and t2 are defined as -j- t
2~t 

l 

and Cph — T^rfS respectively. These values are assigned to the average position x^+xi 

and the average time *2+*1. To be consistent, the wavelengths and amplitudes of the 

same peak at ti and t2 are also averaged to get the mean assigned to the time t;^fl. 

They used bins of wavelengths (50km interval) to group the observational data and 

average the growth rates in each bin. Their analysis in this way has found the fastest 

growing wave of 350km in wavelength and 40 days in period. 

In Chapter 2, I have emphasized that even in the case of pulse instability, the 

amplitude and energy of each Fourier component still grows as temporal instability 

theory predicts. This suggests that the most unstable wave from temporal instability 

or maximum of envelope growth from pulse instability should be compatible with the 

most energetic wave Lee and Cornillon described, if the nonlinearity in the obser- 

vation is not considered. And the way they calculated the fastest growing wave is 

straightforward and also compatible with the fastest growing individual peak wave in 

my models. 

The following table summarizes the differences between the most unstable 

wave and the fastest growing wave described by Lee and Cornillon (1994b) as well 

as those predicted from our models.    Although Lee and Cornillon attributed the 
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differences to nonlinearity, I will first compare their results with linear models and 

return to the nonlinearity issue in Section 6.3. 

most energetic wave fastest growing wave 
L (km) Ui (1/day) T (days) L i/,- (1/day) T 

Lee and Cornillon 427 ± 70 .032 46 350 .063 40 
SW6 363 .044 48 339 .105 37 
QG6 349 .063 44 293 .151 22 

When it comes to the difference between the most unstable and the fastest 

growing modes, the results of different models spread widely and there is tradeoff 

between how well a model can explain the period and the wavelength, taking obser- 

vations as given (i.e. without error). For example, in the QG six-layer model, the 

ratio of the wavelength of the fastest growing wave to that of the most unstable wave 

is 84%, which compares well with the ratio observed (82%). However, the ratio of the 

period of the fastest growing wave to that of the most unstable wave is only 50%, too 

small compared the ratio observed (87%). In the six-layer SW model, on the other 

hand, the ratio in wavelengths is 93%, larger than the observed (82%); the ratio in 

periods is 77%, which agrees better than the QG model with that observed (87%). 

The ratio of the growth rate of the fastest growing wave to that of the most unstable 

wave is 2.0, 2.4, and 2.4 from the observation, the QG and SW six-layer models, 

respectively. The ratios of the growth rates seem to be in reasonable agreement. 

Despite the discrepancy among the models and the observation, it appears 

to be a robust common feature that the fastest growing wave has higher growth rate, 

wavenumber and frequency than the most unstable wave. And the differences between 

the most unstable and the fastest growing waves in the models seem able to explain 

substantial parts of the differences observed. 

The QG six-layer model overestimates substantially the maximum growth 

rate compared to the SW six-layer model (e.g. 40% higher in QG6 than that in SW6). 

This is consistent with the previous study by Orlansky (1969) that finite Rossby 
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number reduces the growth rates of unstable waves. However, QG and SW models 

give comparable wavelengths and phase speeds of the main unstable modes (e.g. 

349km and 7.9km/day in QG6 vs 363km and 7.5km/day in SW6). The growth rates 

of individual peaks in the two models agree very well as functions of the group velocity, 

though the maximum growth rates are still significantly different. The conclusion from 

this comparison is that the QG model gives results quantitatively different from those 

from the SW model, but there is no qualitative difference between the two models in 

term of the first most unstable modes. 
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Chapter 5 

The Instabilities of the Gulf 
Stream—Numerical Simulation 

5.1     Introduction 

In Chapter 4, I have compared the pulse instability from the QG and SW 

six-layer models with the observational analysis by Lee and Cornillon (1996b). The 

conclusion is that the differences between the most energetic and the fastest growing 

waves in the models appear able to explain substantial parts of the observed differ- 

ences. Before we conclude that pulse instability is the most appropriate model for 

Gulf Stream movements, we need to address a couple of issues. The first is whether 

there is enough time for pulse instability to establish itself in the Gulf Stream be- 

cause we are using an asymptotic solution which requires that the time after the initial 

perturbation be large. Since the center of a wave packet moves at a specific group 

velocity, the issue can be translated into whether there is enough space for the pulse 

instability to occur. This issue will be addressed in Section 5.5, where I consider the 

development of a single pulse in a two-layer model with jet structure and a sloping 

bottom. 

The second issue concerns an assumption implicit in the comparisons be- 

tween pulse instability from the models and the observed motions. The assumption 

is that the initial disturbance is a pulse and no further perturbation is added in the 

region. This seems unlikely to be the case in the Gulf Stream. To address the effect 

of continuous disturbances in the Gulf Stream as well as the first issue, I will use a 

forced two-layer numerical model in this chapter. For comparison, I will first study 

a two-layer analytical model which uses the exact same parameters as the numerical 

model. 
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The reason I study a two-layer numerical model instead of six layers is 

the computational difficulty. As we already know from the spread ratio analysis in 

Section 3.3 neither form of the two-layer model, with flat bottom or real bottom, will 

take the topographic effect into account properly. However, since we already know the 

dispersion relation of the six-layer model, we may choose the slope of the bottom and 

velocity structure in a two-layer model so that its dispersion relation best resembles 

that of the six-layer model. It is important to keep in mind that without the results 

from the QG six-layer model, we could not choose the parameters in the two-layer 

model from the section data meaningfully to get a reasonable dispersion relation. 

The numerical model has three dimensions instead of two dimensions in 

the analytical model, the third dimension being the along-stream direction. Because 

mean flow and waves are moving along that direction, it needs to be much longer 

than the cross-stream width of the channel model. As discussed in the next section, 

the parameters of the two-layer model and especially the topography will be adjusted 

so that the instability properties are similar to the QG six-layer model. 

I will use the satellite data analyzed by Lee and Cornillon (1996a) to force 

the numerical model in the upper stream, and investigate how differently disturbances 

evolve compared to the one single pulse idealized case studied in this chapter. 

5.2     A Two-Layer QG Analytical Model 

Because of computational difficulty in multilayer numerical models, I will 

focus on a two-layer numerical model in this chapter. To prepare for the comparison 

between numerical runs and analytical results, a two-layer analytical model is first 

studied here. For the model to have a dispersion relation as close to the Gulf Steam 

situation as possible, I search for a two-layer model with proper topography and 
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Figure 5.1: A two-layer model with a sloping bottom (solid curve). Also plotted is the topography- 
used in the multiple layer model (lower dashed). Upper dashed curve is the interface between the 
upper and lower layers. 

velocity structure which best approximates the dispersion relation of the six-layer 

model. 

As we have found in Chapter 3, a two-layer model with a realistic topog- 

raphy will overestimate the effect of topography. In this two-layer model, I take the 

alternative to use a sloping bottom and choose the slope so the maximum growth rate 

of the main mode in the model will match the maximum growth rate of the main mode 

in the QG six-layer model. Figure 5.1 shows the configuration of a two-layer model 

we will use. The solid curve is a sloping bottom. Its slope is determined to be 0.0054. 

Also plotted is the topography used in the multiple-layer model (lower dashed). The 

upper dashed curved is the interface between the upper and lower layers. 
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In two-layer models, we do not fit the velocity structure with a Gaussian 

profile since the purpose is to match the dispersion relations in the six-layer model and 

it turns out the Gaussian fit does not make the best match. Figure 5.2 shows the layer- 

averaged velocity profile calculated from CTD data (Hall and Fofonoff, 1993) for the 

two-layer model. The region marked with '?' sign in the figure has an unusual small 

scale structure, which arises from a single data point and does not appear in other 

cross-stream profiles. This may be due to an eddy or the lack of barotropic velocity 

component. In order to see the effect of the small scale structure on instabilities, I 

have modified the velocity profile slightly, as shown in Figure 5.3. 

Figure 5.4 shows the instabilities calculated for these two profiles (using 

sloping bottom), with dash-dotted curves associated with the original profile and solid 

curves with the modified one. We can see that the peak of growth rate at k=2.9 (or 

a wavelength of 217km) has been significantly reduced by smoothing the profile and 

becomes negligible. From the phase speed associated with this peak, we can identify 

that this peak as arising from barotropic instability in the top layer. By smoothing 

the velocity profile slightly on the edges of the jet, the peak has been reduced more 

than 70%. Because this peak is so sensitive to the profile and the structure in the 

original profile in this region arises from a single data point, we do not believe that 

the peak at k=2.9 is a robust feature in the Gulf Stream. Therefore, we will use the 

modified profile hereafter. 

Figure 5.5 shows temporal instability in the model. The upper panel shows 

phase speeds vs real wavenumber k, while the lower panel gives temporal growth 

rate U{. For comparison, the results from the QG six-layer model are represented 

with dashed curves. The two-layer model agrees well with the six-layer model in the 

main mode. The maximum growth rates in the two models are the same because 

the slope in the two-layer model is such chosen to best match the maximum growth 

in the six-layer model.  Moreover, the shapes of the main modes in the two models 
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are similar. This is also true with wavenumbers and frequencies in pulse instability 

calculation shown in Figure 5.6. Although for given group velocity, the two-layer 

model has higher wavenumber and frequency, the slopes of the curves compare well 

with the six-layer model. The figure only compares the most unstable modes in each 

models. The lower panel shows how the growth rates of individual peaks differ from 

corresponding envelope growth rates. It is clear that the patterns are similar in the 

two models. 

5.3     Temporal, Spatial and Pulse Instabilities in a 
Two-Layer Model 

The purpose of this section is to prepare for comparisons between analytical 

and numerical models in later sections. Since we have already chosen parameters in 

this analytical model so that the dispersion relation for the primary mode resembles 

that of the QG six-layer model, the differences between temporal, spatial and pulse 

instabilities in this model are similar to those in QG6 and will not repeat the similar 

comparisons here. However, we do need to examine spatial instability and to consider 

other modes as well. 

The results of temporal and pulse instabilities have been shown in last sec- 

tion (Figure 5.5 and Figure 5.6), but we redraw the corresponding figures here for 

clarity. Figure 5.7 shows three most temporally unstable modes. The peak with 

largest growth rate has a wavenumber of about 1.9 (with unit: l/100km), or a wave- 

length of 334km. Its maximum growth rate .063 corresponds to an e-folding time 

of 16 days. The phase speed and group velocity right at the peak are 12cm/s and 

29cm/s. Its period is 32 days. The second and third largest peaks with k = 3.1 and 

2.5 are fast moving waves concentrated at the upper layer of the Stream. 

135 



0.35 

0.3 

0.2 

1?   0-25 
CO 

X3 

£ 
o 
E   0.15 

1      0.1 
Q. 

CO 
<D   0.05 
CO 
co 

£ 0 

-0.05 - 

-0.1 
0 2 3 4 

Wavenumber k (1/100km) 

0.07 

2 3 4 
Wavenumber k (1/100km) 

Figure 5.5: Temporal instability in the two-layer model with a sloping bottom. Upper panel: 

Phase speeds vs real wavenumber k. Lower panel: Temporal growth rate u>i vs real wavenumber 

k. Solid curves correspond to the two-layer model. For comparison, the results from QG six-layer 

model are represented with dashed curves. 

136 



E 
o o 

2.5 

CD 
-Q 

£     2 
CD > 
CO 

0.4 

0.2 

0) 
"CO 
CC 

0.15 

0.1 

o 0.05 

QD 
0 

-0.05 

0.2 0.3 0.4 0.5 0.6 0.7 
Group Velocity Cg (m/s) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Group Velocity Cg (m/s) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Group Velocity Cg (m/s) 

0.8 

0.8 

0.8 

0.9 

0.9 

0.9 

Figure 5.6: The results of pulse instabilities corresponding to the two and six-layer models. Solid 

curves correspond to the two-layer model. For comparison, the results from QG six-layer model are 
represented with dashed curves. 

137 



0.35 

1.5 2 2.5 
Wavenumber k (1/100km) 

3.5 

0.07 

_0.06 
CO 

■o 

^0.05 
£ 

^ 0.04 - 

<5 0.03 - 
"cc 

a. 0.02 
E 
CD 

*~ 0.01 

0.5 1.5 2 2.5 
Wavenumber k (1/100km) 

3.5 

Figure 5.7:   Temporal instability in the two-layer model with a sloping bottom.   Upper panel: 

Phase speeds vs real wavenumber k. Lower panel: Temporal growth rate w; vs real wavenumber k. 

138 



The upper panel of Figure 5.8 shows the spatial growth rates of the first three 

modes in spatial instability as a function of forcing frequency. The maximum growth 

rate of the first mode is about four times of those of the second and third modes. The 

second and third modes are numbered in term of wavenumbers and frequencies. The 

three modes do not overlap in the frequency domain. It is important to remember that 

it is the frequency of forcing that determines which mode will dominate in a system, 

not the magnitude of the maximum growth rates of modes. In spatial instability, 

given a forcing frequency, there will be a dominant wave which moves at constant 

phase speed determined by dispersion relation. The spatial growth rate multiplied 

by the phase speed will give the growth rates of individual peaks, which are shown 

in the lower panel of Figure 5.8. The three modes which do not overlap in frequency 

domain now overlap in part in wavenumber domain. It is interesting to note that the 

third mode has a maximum growth rate about 75% of that of the first mode when 

one follows an individual peak, whereas the corresponding spatial growth rate is only 

about 25% of that of the first mode. 

Figure 5.9 and Figure 5.10 show the results from pulse instability for the 

three most unstable waves. In all the panels, the horizontal coordinate is group 

velocity, which is multiplied by the time to derive the position of the individual peak 

from where the disturbance originated. The upper and lower panel of Figure 5.9 

show the growth rates of individual peaks and the envelopes. V and dark 'x' marks 

indicate the properties corresponding to the maximum growth rates of envelopes and 

individual peaks, respectively. From the previous chapters, we already know that the 

growth rate of an individual peak closely depends on its position relative to the peak 

of the envelope and can be very different from that of the envelope. In this model, an 

individual peak in the leading edge of the wave packet can grow as fast as 170% the 

rate of the envelope growth (for the most unstable mode). For the second or third 

mode, that ratio is about fourfold. A peak in the leading edge can grow several times 

as fast as another peak in the trailing edge. 
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Figure 5.8:   Spatial instability: Upper panel: spatial growth rates.  Lower panel: growth rates of 
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The upper and lower panels in Figure 5.10 show the corresponding wavenum- 

bers and frequencies. Again, 'x' and dark 'x' marks indicate the properties correspond- 

ing to the maximum growth rates of envelopes and individual peaks, respectively. For 

the first mode, the most unstable wave (marked with 'x', at the center of the enve- 

lope) has a wavenumber 1.88 (a wavelength of 334km), a frequency of .287 (a period 

of 32 days) and a phase speed of 12cm/s, but the envelope itself moves at group 

velocity of 29cm/s. The most rapidly growing individual peak (marked with dark 'x') 

has a wavelength of 292km, a period of 20 days and a phase speed of 16cm/s. The 

corresponding envelope moves at a group velocity of 64cm/s. Thus the most rapidly 

growing wave, compared with the envelope, has higher phase speed and group velocity, 

shorter wavelength and period. 

Figure 5.11 compares the properties of individual peaks predicted by the 

three theories as a function of wavenumber. This is to prepare for the comparisons in 

Section 5.6 where the group velocity is not a proper variable because of the continuous 

forcing. Only the first mode from each theory has been plotted. The upper and lower 

panels show the phase speeds and growth rates respectively. As we can see from the 

both panels, the three theories give clearly distinguishable pattern of properties as 

function of wavenumber. Pulse instability gives the largest maximum growth rate, 

whereas the spatial instability the lowest. 

5.4     A Two-Layer QG Numerical Model 

5.4.1     Model Description 

The model here differs from Phillips' model used in Chapter 2 in two aspects. 

The first is the inclusion of topography, in this case a sloping bottom. The second 

is the nonuniform velocity profiles used here. It is a QG two-layer inviscid channel 

model.    The stream function in each layer is independent of depth.    Again, n=l 
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Figure 5.11:  Comparison among growth rates of individual peaks predicted by temporal, spatial 

and pulse instabilities. Only the primary modes from the theories are plotted. 
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indicates the upper layer, and n=2 the lower one.  Based on layer models described 

in Pedlosky (1986, Sec. 6.16), the equation of motion can be written 

4t + iL^ly ~ !/4>{V^ - *(* - « +M = 0       (5.4.1a) 
{m+h*>h - J^Ä>{vV* ~m* - w+*+'-}=°   (5-4-lb> 

where ß is the nondimensional gradient of planetary vorticity and 775 the topography. 

Fi, and F2 are Froude numbers on each layer. 

I separate Equations (5.4.1a-b) into a nonuniform and purely zonal basic 

flow Un with streamfunction $n(y) and a disturbance stream ipn, 

il>n = Vn(y) + <l>n(x,y,t) (5.4.2) 

leading to 

[di + U^]q» + TJ^" 
+ fc^9" - -dy^dy^ = ° (5-4-3) 

where qn is the perturbation potential vorticity, 

qn = VVn - Fn{-l)n{<t>2 - &) (5.4.4) 

and g-nn is the potential vorticity gradient of the basic state, 

9^1=ß-jjiU1-F1{U2-U1) (5.4.5a) 

—n2 = /3 - —J72 - i^ _ u2) + ^ (5.4.5b) 

where /3ß is the bottom topographic ß parameter. 

Linearizing and adding forcing gives 

CS O Q Q 

[ät+ önä;]?B + ^^^nn = F(x'»'*) = £"(*.*)/(*)        (5-4-6) 
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where F(x,y,t) = Gn(x,y)f(t) is the forcing function. Gn(x,y) has the form of 

I,,J 
Gn(x,y) = Bne

{-{x~Xn) lL%-(y~^ lL)y} (5.4.7) 

The forcing is introduced at a particular location around (xn, -*■) with 

Gaussian distribution. Ly is the width of the channel; 320km is used. The forcing is 

therefore concentrated in the center of the channel and the jet. Lfx and Lfy are the 

forcing scales in x and y directions respectively. The time dependent part f(t) will 

specified in Section 5.6 

The lateral boundary conditions are 

—cf)n = 0 y = 0,Ly (5.4.8) 

Pulse Disturbance 

In the experiments concerning evolution of a pulse disturbance, I set F(x,y, t) 

in Equation (5.4.6) to be 0 and cßn = Gn(x,y) as described in Equation (5.4.7) at 

t = 0. Ai is chosen to be 4A2 and is offset by 50km to the west arbitrarily, i.e., 

X-L = x2 — 50. For convenience, x\ is chosen to be 0 and hence the initial pulse in the 

upper layer is generated at the origin of the along stream coordinate. LfX is 60km 

and Lfy is 30km.. The upper panel in Figure 5.12 shows the initial condition. The x 

axis was labeled with downstream distance. The lower panel shows a general picture 

of the developed disturbance after some time. 

In this numerical experiment, I use an FFT in x direction and sine transform 

in y direction to solve Equation (5.4.6). The sine transform automatically satisfies 

the boundary conditions in Equation (5.4.8). I use leapfrog time stepping combined 

with Euler time stepping. An Euler time step is performed every fiftieth time step 

to remove the computational instability which occurs when leapfrog timestepping is 

used. 
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Figure 5.12: Pulse instability. Upper panel: the initial condition used. Lower panel: a typical 

well developed wave packet. Solid and dashed curves represent the streamfunctions along the center 

of the jet in the upper and lower layers respectively. 
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In the pulse disturbance case, I will use a model domain of Lx = 10240km 

and Ly = 320km. Because the model is periodic in x direction, the numerical run will 

be stopped when the developed wave packet wraps around the domain. The model 

resolution is Ax = Ay = 10km and the time step At = 2000 seconds. 

The numerical model also includes friction which is necessary to keep the 

numerical run stable. The friction has the form rxV
2^n + r2S76<f>n, where rx and r2 

are friction coefficients and are minimized as not to affect the comparison between 

analytical and numerical models. 

5.5    Development of a Single Pulse 

With the initial condition shown in the upper panel of Figure 5.12, I have run 

the model until the leading edge of the unstable packet reentered the upstream end of 

the periodic channel. At any time, stream functions in the two layers can be plotted 

as functions of downstream distance, for example; see the lower panel of Figure 5.12. 

Starting from the figure, we can locate all the crests and troughs, and use a spline fit 

to determine the envelope of the wave packet. We can also track individual peaks and 

calculate the corresponding growth rates. The methods to calculate the growth rates 

of individual peaks and the envelope have been detailed on page 69 in Section 2.5 

and will not be repeated here. Figure 5.13 shows the growth rates calculated from 

the numerical run on 24th day. 

In the upper panel of Figure 5.13, '*' indicates the growth rate of individual 

peaks from the numerical run. Also plotted in the figure are the three most unstable 

modes from the analytical model, for the purpose of comparison. V and dark 'x' 

marks on the analytical curves correspond to the maximum growth rates of the en- 

velope and individual peaks respectively. The lower panel plots the growth rates of 

the envelope from the numerical model (solid curve) and from the analytical model 
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(labeled in the figure). We can see from both panels that the wave packet is still far 

from the asymptotic solution. 

The analytical modes plotted in the figure include the correction term -l/2i 

because this term accounts for a significant portion of the maximum envelope growth 

rate for the time scale shown here. In particular, this portion is 33%, 18%, 13% 

and 8.7% on day 24, 45,61 and 91 respectively. This correction term -1/2* does 

not depend on the group velocity and will hence not affect the relation between 

the envelope and individual peaks. Adding this term makes easier the comparison 

between the analytical and numerical results. 

Figure 5.14 shows the corresponding wavenumbers ('*' in upper panel) and 

phase speeds ('*' in lower panel) of the unstable waves in the wave packet. The three 

modes of pulse instability from analytical model are also drawn and labeled in the 

figure. From the upper panel, the wavenumbers from the numerical run appear to 

agree well with the first analytical mode in a large range of group velocity (0.1 to 0.7). 

This seems to suggest that the wavenumbers are not sensitive to whether asymptotic 

form of solution has been achieved. When the group velocity is greater than 0.7, the 

wavenumbers seem to match the third and second modes. This phenomena can also 

be seen in the phase speed plot in the lower panel. This is probably because, in that 

range, the third and second modes have higher envelope growth than that of the first 

mode. The phase speeds from the numerical run follow the pattern of the analytical 

modes, but are still far off from those modes. 

Figure 5.15 shows growth rates on 45th day. In a range of Cg from 0.1 to 

0.48, the numerical results agree reasonably with analytical counterparts. When Cg is 

greater than 0.6, the growth rates again seem to follow the second or third analytical 

modes for the reason mentioned above. This seems to be a persistent feature showing 

up even on 24th day (see Figure 5.13) and also on the 61st and 91st days shown later. 

The second and third modes have similar structures in growth rates and it is difficult 
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to tell them apart. Between Cg = 0.48 and Cg = 0.6, the first and second modes 

have comparable envelope growth, and the growth rates of individual peaks in the 

transition range shift from the first mode to the second. 

Figure 5.16 shows the wavenumbers and phase speeds. Again in the range 

of Cg from 0.13 to 0.48, the numerical results agree reasonably with analytical coun- 

terparts. Between Cg = 0.48 and Cg = 0.7, the numerical results seem to follow the 

first mode and appear feel the influence of the other modes. Beyond Cg = 0.75, three 

peaks observed are closest to the second mode and then two peaks at leading edge 

are in the neighborhood of the third mode. 

Figure 5.17 converts the horizontal coordinate from Cg to downstream dis- 

tance. As we can see from the figure, the maximum of the envelope is now at 

x — 1100km. Since the disturbance was generated at x = 0, the maximum of the en- 

velope has traveled about 1100km. Taking the Gulf Stream as a system ranging from 

75°W to 4:5°W, the region covered by Lee and Cornillon's analysis, there appears to 

be enough space for the pulse instability to reach its asymptotic form. However, the 

time at which the envelope reaches 70°W (about 20 days) is not long enough. The 

time at which it reaches 65°W (about 45 days) is sufficient. 

Figure 5.18 shows growth rates on 61st day. The patterns in the figure are 

not much different from those in Figure 5.15. In the lower panel, the growth rate of 

the envelope now has better agreement with analytical model in terms of the shape 

of the curve. The spike in the trailing edge has been caused by large relative errors 

due to numerical noise amplified by the spline interpolation. The range of Cg where 

the first mode can explain the numerical results well has expanded slightly from (0.13 

0.48) to (0.12 0.54). This also shows up in the top panel. The fastest growing wave 

associated with the first mode now is at Cg = 0.54, whereas it was 0.48 on 45th day. 

The patterns in the leading edge do not change much between the two figures. 
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Figure 5.15: As in Figure 5.13 but Time=45 days. 
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Figure 5.16:  As in Figure 5.14 but Time=45 days. 
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Figure 5.19:  As in Figure 5.13 but Time=91 days. 
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Figure 5.21:  As in Figure 5.13 but Time=61 days. 
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Figure 5.22: As in Figure 5.14 but Time=61 days. 
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Figure 5.19 shows growth rates on 91st day. The patterns in the figure are 

very close to those in Figure 5.18, suggesting that the development of wave packet has 

finished its transient stage by the 61st day. The agreement of the growth rates between 

numerical and analytical models improve slightly but not significantly. This suggests 

the remaining difference is mostly the effect of friction. The slight improvement in the 

agreement is probably due to other 0(1/t) contribution other than the correction term 

— l/2t taken account already. In both figures, the fastest growing peaks occur slightly 

to the left of Cg — 0.55, which is the point where the envelope growth of first and 

second mode are the same. This suggests that the fastest growing peak associated 

with the first mode can only be realized in the region where its envelope growth 

dominates. This fastest growing peak has slightly lower group velocity, wavenumber 

and phase speed than that predicted from the first mode of the analytical model. I did 

not include this term in the demonstration of pulse instablity in Chapter 2 because 

the time there was chosen to be large. 

Note that in the top panel, the fast growing waves associated with the second 

or the third mode are not picked because I have set a threshold in software to pick only 

crests or troughs which have amplitudes at least 1% of the maximum amplitude in the 

model. As the time increases, the difference between the maximum envelope growth 

rate in the model and the envelope growth rates in the leading edge has amplified 

the ratios in amplitudes. Therefore the small amplitude but fast growing waves in 

the leading edge become 'unobservable' with our predetermined threshold. This may 

have practical implication in the Gulf Stream observations where the very fast growing 

but small amplitude waves are unlikely to be observed due to the resolution limits in 

tracking techniques, for example, errors in pulling out north wall positions. 

Figure 5.20 converts the horizontal coordinate from Cg to downstream dis- 

tance. As we can see from the figure, the maximum of the envelope is now at around 

x = 2200km.   However, the fastest growing wave associated with first mode occurs 
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near x = 4200km; this is beyond the domain of the Gulf Stream. Figure 5.21 shows 

that on the 61st day, the fastest growing wave associated with first mode occurs near 

x = 2800km. Again taking the Gulf Stream as a system ranging from 75°W to 45°!^, 

as covered by Lee and Cornillon's analysis, this fastest growing wave is still in the 

domain. This fastest growing wave is much more likely to be picked by observational 

techniques because it has much larger amplitude than the fastest growing wave asso- 

ciated with the second mode in the leading edge for the reason I mentioned above. 

Therefore I take the fastest growing wave associated with first mode as the plausi- 

ble fastest growing wave in the numerical model. The fastest growing wave in the 

following analysis refers to this plausible fastest growing wave. 

In the derivation of the growth rate of the envelope in Section 2.3.3, I have 

assumed that when u>(k) have branch points, we can avoid going around these points 

in some way when we integrate to get asymptotic solution. It is difficult to prove this 

assumption mathematically, in particular in such a complicated model. However, 

the reasonable agreement with numerical results demonstrates that this is a sensible 

assumption in this model. 

In summary, it takes about 45 days for a single pulse disturbance to develop 

close to its asymptotic form. In that period the wave packet has moved downstream 

1100km to about 65°W. This is still in the range where the Gulf Stream system has 

been intensively observed. Hence there appears to be enough space for the pulse 

instability to occur in the Gulf Stream. In about two months, the development 

reaches its equilibrium stage. On 61st day, the growth rate of the fastest growing 

wave has a growth rate 0.086/day, which is 60% higher than the maximum envelope 

growth 0.053/day. The former has a wavelength, phase speed and period of (310km, 

14km/day, 22 days), and latter (336km, 12km/day, 29 days). 

162 



The following table summarizes the differences between the most unstable 

wave and the fastest growing wave from our analytical and numerical models, and 

that described by Lee and Cornillon (1996b). 

most energetic wave fastest growing wave 
L (km) Ui (1/day) T (day) L Vi (1/day) T 

Lee and Cornillon 427±70 .032 46 350 .063 40 

SW6 363 .044 48 339 .105 37 

QG6 349 .063 44 293 .151 22 

QG2 analyt. 334 .063 32 292 .108 20 
QG2 num. 61st day 336 .054 29 310 .086 22 
QG2 num. 45th day 338 .052 29 326 .077 23 

To make comparison easier, I scale all quantities of the fastest growing wave 

by the quantities of the most energetic wave to get 

most energetic wave fastest growing wave 
L (km) tvi (1/day) T (day) L ratio Vi ratio T ratio 

Lee and Cornillon 427±70 .032 46 0.82 2.0 .87 
SW6 363 .044 48 0.93 2.4 .77 
QG6 349 .063 44 0.84 2.4 .50 
QG2 analyt. 334 .063 32 0.87 1.7 .63 
QG2 num. 61st day 336 .054 29 0.92 1.6 .76 
QG2 num. 45th day 338 .052 29 0.96 1.5 .79 

From the above table, it appears that the QG two-layer analytical and nu- 

merical model have comparable ratios of quantities between the fastest growing waves 

and most energetic waves despite the fact that the maximum growth rate in the nu- 

merical model is 18% lower than its analytical counterpart on 45th day or 14% on 

61st day. This difference is mainly due to the 0(1 /t) contribution neglected in the 

analytical growth rate. When t is as short as 45 days or 61 days, the main features of 

pulse instability already show up clearly in the numerical model. This suggests that 

the analytical results of SW6 and QG6 may also be carried over to their corresponding 

numerical models. 
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5.6     Continuously Forced Problem 

To have a forcing function with characteristics as close to the real situation as 

possible, I will use the displacement of North wall of the Gulf Stream at 200km down- 

stream from Cape Hatteras. The data was digitized by Lee and Cornillon (1996a,b) 

from sea surface temperature (SST) images obtained from the Advanced Very High 

Resolution Radiometer (AVHRR), as described in Section 4.4. The reason I did not 

use the displacement of North wall at Cape Hatteras as the forcing function is that the 

displacement there is small and has the same order of magnitude as the errors from 

observations and digitizing processes (digitization error 4.8km, Gangopadhyay, 1990). 

Figure 5.23 shows a portion of the displacement of North wall at 200km downstream 

as function of time, 'x's indicate the digitized position available in two day interval 

and the solid curve is the interpolation of the position into higher resolution for the 

numerical runs. The distribution of forcing in space is described in Equation (5.4.7). 

The along stream coordinate is such chosen that the forcing is centered at the origin. 

The model is only forced in the upper layer. 

Because of the large contrast of amplitudes at the ends of the periodic do- 

main, a sponge layer does not work well in this model. If the damping in the sponge 

layer is too strong, the large amplitude wave near the downstream end of the domain 

will be reflected back to the domain and cause a resonant growing global mode in 

the domain. If the damping is too weak, a small fraction of the large wave will pass 

through the sponge layer. This small fraction of the large amplitude wave will, in 

fact, dominate over the small amplitude forcing upstream and the forcing becomes 

ineffective. Therefore I will use a very long domain of 20480km without a sponge 

layer in this experiment. The numerical run will be stopped when the large ampli- 

tude wave wraps around and reenters the upstream area. I will only analyze the 

streamfunction in the upper layer, which is compatible with most observational anal- 
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yses (for example, Lee and Cornillon, 1996a,b, Halliwell and Mooers, 1983). Due to a 

numerical difficulty explained later, I can study only the upstream region from 200km 

to 1200km. The upper panel of Figure 5.24 shows a typical pattern of waves in the 

continuously forced problem. Also shown is the way I define a half wavelength and 

the amplitude of the wave. At time t, a half wavelength is calculated by measuring 

the positions of an adjacent crest and trough and the value is assigned to the average 

position x of the two points. The half wavelength is converted to wavenumber (k) by 

k = TT/L. A double wave amplitude (2A) at time t is defined as the difference of the 

stream functions between the crest and the trough. Such a definition seems to give a 

reasonable measure for small amplitude crests and troughs even when pairs of crests 

and troughs are pushed around by relatively large amplitude long waves. The value 

of this amplitude A is assigned to the average position x of the two points and is also 

associated with the wavenumber k. This method is performed every 2xl05 seconds 

(2.3 days). The lower panel of Figure 5.24 shows how I track the wave peaks and 

crests. The streamfunction at £2 has been shifted down by 5 units for the convenience 

of comparison. Corresponding peaks or troughs at time ii and i2 are connect by 

dashed lines. If the position of the pair are xx and x2, and amplitudes A\ and A2, at 

the time ii and t2 respectively, the growth rate and phase speed between ii and 22 are 

defined as ^rA?~fl and CU = f^fS respectively. These values are assigned to the 

average position X2'2"Xl and the average time ^2^L. To be consistent, the wavelengths 

and amplitudes of the same pair at t\ and i2 are also averaged to get the mean value 

assigned to the time ^Y
1
-- 

The starting time for measurement of wave activity is determined by a con- 

trol run of a single pulse development as in the previous section. The measurement in 

the continuously forced problem starts sightly after the maximum of the wave packet 

in the control run passes the downstream end of the area. This is demonstrated in 

the upper panel of Figure 5.25. The ending time of the measurement, however, is 

determined either when the waves wrap around the periodic domain and reenter the 
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Figure 5.24: Upper panel: a typical pattern of waves (streamfunction in the upper layer) in the 

continuously forced problem. Also shown is the way I define a half wavelength and the amplitude 

of the wave. Lower panel: how wave peaks and crests are tracked. The stream function at t2 has 

been shifted down by 5 units for the convenience of comparison. 
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upstream end of the study area, or when the limited precision used starts to cause 

large numerical error. The lower panel of Figure 5.25 shows the latter case. For a 

given precision, the model will blow up after a certain amount of time when the am- 

plitude contrast in the model becomes very large. This probably is a specific problem 

of the model due to the use of periodic domain and Fourier expansion. It also hap- 

pens in the single pulse experiments. Essentially, the problem comes from the use of 

Fourier series to expand the streamfunction with large amplitude contrast in different 

regions. When the amplitude contrast is small, the Fourier components will cancel 

among themselves exactly where the wave packet has not reached, in the case of the 

single pulse experiments. When the amplitude contrast becomes substantially large 

(e.g., 106), however, there will be large relative errors due to inaccuracy in the Fourier 

transformation (FT) and inverse FT. These errors will grow in time as the amplitude 

contrast increases. The errors will be larger in the region with smaller amplitude, 

especially in the upstream region or in the front of the leading edge of the first wave 

packet caused by the onset of the forcing. 

The measurements from different runs, corresponding to different segments 

of the forcing function, are pooled together for statistics. In the continuously forced 

problem, we cannot plot quantities such as growth rates and phase speeds as functions 

of Cg = x/t. This is because we do not know, when we observe a particular developed 

wave, the time when its corresponding initial disturbance was generated. Hence in this 

problem we plot phase speeds and growth rates vs. their corresponding wavenumbers. 

Figure 5.26 shows such a plot. 

Figure 5.26 plots phase speeds (dots in the upper panel) and growth rates 

(dots in the lower panel) of individual wave peaks in the area from 200 to 1200km 

downstream. Also plotted are the first analytical modes from pulse (solid curve), 

temporal (dark dashed) and spatial (dashed) instabilities. In the figure, the dots 

measured from the numerical runs scatter widely, which cannot be explained by any 
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Figure 5.25: A demonstration how the starting and ending times from measurement are deter- 

mined. Upper panel: time series at 1200km (downstream end of the study area) from the single 

disturbance run. Lower panel: time series at 200km (upstream end of the study area) from the 

continuously forced problem. 
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of the three idealized types of instabilities. It is unlikely that the errors arise from 

measuring positions, calculating wavenumbers and growth rates. Interpolation errors 

should be about a kilometer spatially and a few percent of maximum amplitudes. 

In addition, the same method was also used in the single pulse experiment where 

phase speeds, wavenumbers and growth rates were well-behaved and agreed well with 

analytical results. It is most likely to be associated with interference of different waves 

generated by the forcing. 

Figure 5.27 shows the least square fit (dark straight line) to the growth rates. 

The slope is 0.2029 and has a 95% confidence interval of [0.1637 0.2420]. The slope 

at the maximum envelope growth from the pulse instability is 0.2449, slightly higher 

than the upper bound of numerical interval. This could be explained by the friction 

used. In the numerical experiments, I used minimal friction to avoid the numerical 

instability. The friction has the form riV2</>n + T2V6(f>n, where r\ and Tz are friction 

coefficients and has stronger damping effect for short waves. The straight line fit 

almost passes both of the maximum of the envelope growth and the maximum of 

individual peak growth. This might be by accident. However, these measurements 

form a general trend: the short waves tend to grow faster than long waves. This 

trend seems consistent with the pulse instability theory and cannot be explained by 

temporal and spatial instabilities. 

To quantify this trend, I break the measurements into different wavenumber 

bins. The interval of the bin is 0.1(l/100km). Sufficient number of measurements in a 

bin allows calculation of mean and standard deviations (hence error bars). Figure 5.28 

shows these averages and errorbars. The averages, indicated by 'o', are connected by 

dash-dotted curve for convenience of comparison with theories. The errors are so 

large that we cannot exclude the temporal and spatial instabilities. Only the pulse 

instability seems to agree with measurements within errors near the maximum growth 
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of individual peaks. Pulse instability cannot explain the growth rates (some negative) 

in the trailing edge. 

Figure 5.29 is similar to Figure 5.28 except average phase speeds are shown 

instead of average growth rates ('o'). The average phase speeds do not seem to fit 

any of the analytical curves. This is probably due to forcing and interaction between 

pulses. When the wave amplitudes are small, errors in measuring the positions of 

peaks will be large because peaks are close to flat.   In Figure 5.29, the waves with 
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Figure 5.29: Similar to Figure 5.28 except average phase speeds are shown instead of average 

growth rates ('o'). Analytical curves: solid: pulse, dashed: spatial, dark dashed: temporal. Area 

studied: 200-1200km. 

wavenumber higher than that of most unstable wave still have tendency to move 

faster than longer waves. 

The upper panel in Figure 5.30 shows a histogram of the probability distri- 

bution of growth rates of individual peaks, 'x' and 'o' indicate the maximum growth 

rates from temporal and spatial instabilities, respectively. The dark 'x' is the max- 

imum growth rate of individual peaks predicted by pulse instability. The bins have 

width of 20% (0.013) of the maximum temporal growth rate (0.063/day). This growth 

rate is the most probable growth rate in the area. From the cumulative probability 

distribution in the lower panel, we can see that a significant portion (40%) of the 
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peaks have growth rates higher than the maximum temporal growth rate, and half of 

these have growth rates higher than the maximum peak growth predicted by pulse 

instability. Such large growth rates are probably due to constructive interference be- 

tween different wave pulses. Similarly, distructive interference may also be the reason 

for the decaying waves on the left end of the upper panel. One very important impli- 

cation of the experiment is that if we measure the growth rate of an individual peak 

in the Gulf Stream, there is a good chance of finding that its growth rate exceeds the 

maximum growth rate predicted by either temporal or spatial theory. 

From the single pulse experiment, we know that it takes about 45 days for 

a single pulse disturbance to develop close to its asymptotic form. In that period 

the wave packet has moved downstream 1100km to about 65°W. The area further 

downstream (1000 to 2000km) is where the asymptotic pulse instability theory is 

supposed to work better. An attempt was also made to analyze the wave activities in 

the area. Similar to Figure 5.25, Figure 5.31 shows how to determine the starting and 

ending times for the measurement. The method is the same for the upstream area. 

However, as we can see from the figure, the appropriate starting time is determined 

to be later than appropriate ending time, which leaves no time for measurements. 

The ending time is limited by the large amplitude contrast and the precision used 

in the model, as explained in the above analysis in the upstream area, and is almost 

the same for the upstream and downstream area considered. However, the starting 

time is delayed substantially in the downstream area for two reasons. First, the wave 

packet has to travel extra 1000km to reach the downstream end of the area, at the 

group velocity (Cgmax) corresponding to the maximum of the envelope. Second, the 

wave packet becomes much longer than it was in the upstream area and it takes much 

longer time for the whole packet to pass through the downstream area. A solution 

to the problem is to increase the precision and accuracy of the model, and hence the 

ending time. However, since we are not able to implement a sponge layer without 

serious reflection, we need a long domain for the wave packet to travel downstream. 
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The demands for long domain and high accuracy require more computing resource 

and I have not been able to obtain sufficient "observations" to give reliable answers 

in the downstream area. 

5.7    Summary and Discussion 

From the numerical experiments, we have found that it takes about 45 days 

for a single pulse disturbance to develop close to its asymptotic form. In that period 

the wave packet has moved downstream 1100km to about 65°W. This is still in the 

range where the Gulf Stream system has been intensively observed. Hence there 

appears to be enough space for the pulse instability to occur in the Gulf Stream. The 

development reaches its equilibrium stage in about two months. 

In the continuously forced problem, we have found that the growth rates of 

individual peaks from the numerical runs scattered widely, in the region from 200km 

to 1200km downstream of the forcing location. It is clear that neither of the three 

idealizations of the instability can explain the pattern in this area. However, the 

"observations" from the model run do show trends predicted by pulse instability: 

short waves tend to move and grow faster than long waves. This cannot be predicted 

from temporal or spatial instability. Unfortunately, due to a numerical difficulty, I 

have not been able to extend the analysis to the region further downstream, where 

the pulse instability has been found to work better in the single pulse experiment. 

These numerical experiments again support the robust common features of 

pulse instability we have studied in Chapter 2 to 4, that the fastest growing wave has 

higher growth rate, wavenumber and frequency than the most unstable wave. 

Xue (1991b) also carried out similar numerical experiments of the Gulf 

Stream on the South Atlantic Bight in a 3D primitive model.  She used both cyclic 
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Figure 5.31: A demonstration how the starting and ending times from measurement are deter- 

mined. Upper panel: time series at 2000km (downstream end of the study area) from the single 

disturbance run. Lower panel: time series at 1000km (upstream end of the study area) from the 

continuously forced problem. 
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boundary condition and the gravity wave radiation condition. The former is the 

same as the periodic domain in this model. In the experiments with cyclic boundary 

conditions, she used a domain length of 800km and the disturbances were generated 

automatically by numerical noise in the nonlinear model. She only estimated a growth 

rate of the dominant wave in the model from the change of eddy kinetic energy and 

did not resolve the full dispersion relation. Since the most unstable waves in her mod- 

els travel at phase speed of about 40km/day, it only takes 20 days for waves to wrap 

around the periodic domain of 800km. Hence what she resolved was probably close 

to temporal instability. In the experiments with the gravity wave radiation boundary 

condition, the model was forced by an oscillating temperature field at the southern 

boundary (starting end of the model). The period of forcing (6 days) was chosen 

based on observed period. The most unstable waves in the model appear to have 

periods of about 6 days and wavelengths very close to those observed. This is not 

surprising in light of our discussion in Chapter 2 based on Briggs (1964) work. When 

the system is forced with constant frequency, spatially instability tends to occur and 

the dominant wave has the same frequency as the forcing. The result was not ana- 

lyzed in terms of any of three types of instabilities. Thus it is hard to infer from these 

simulations which is the most appropriate theory for the Gulf Stream meandering. 

This thesis work differs from her work in the emphasis on the comparison between 

temporal, spatial and pulse instabilities. And the continuously forced problem in this 

chapter uses a more realistic nonperiodic forcing (north wall displacement) obtained 

from satellite data. 

In light of our findings from the continuously forced problem, it appears 

very difficult to extract analytical dispersion relation based on the numerical mea- 

surement, even in this simple model which has many fewer complicating factors than 

the real Gulf Stream (e.g. no nonlinearity, no downstream variation of basic flow and 

topography, etc.). However, when we average the growth rates of individual peaks 

in bins of wavenumbers, the average tend to agree with pulse instability to some ex- 
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tent. Hence this experiment suggests that the better way to compare observations 

with analytical model is to group observational data into bins of wavenumbers before 

comparison. This in fact was the way Lee and Cornillon (1996b) used to find out the 

fastest growing wave. In their analysis, they used bins of wavelengths (50km interval) 

to group the observational data. Because the difference in wavelengths between the 

most energetic and the fastest growing waves is of the order of 50km, we suggest use 

of bins with smaller interval, e.g., 15km or 20km. However there is trade-off between 

the resolution and the number of data points in a bin, and a balance has to be struck 

based on the total number of data points. 

The continuously forced problem does not support spatial instability. Hence 

it discourages the way Johns (1988) and Kontoyiannis (1992) compared their model 

analytical dispersion relations with the observations. They extracted spatial growth 

rates from EOF analysis and compared them with equivalent or pseudo-equivalent 

spatial growth rates (ESGR or PESGR) from temporal instability discussed in Chap- 

ter 2 and 3. 
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Chapter 6 

Summary and Conclusion 

In Chapter 2, we used Phillips' model (two-layer QG) to determine and compare the 

characteristics of temp oral, spatial and pulse instabilities. We then extended the study 

to a more realistic QG six-layer model with jet structure and topography in Chapter 

3. Chapter 4 studied non-quasigeostrophic effect by comparison of a SW six-layer 

model with the QG six-layer model. In Chapter 5, we used a QG two-layer numerical 

model to examine which of three idealized types of instabilities is most appropriate 

in the context of the Gulf Stream given continuous forcing. The conclusions have 

been made at the end of each main chapter. Here I will organize these conclusions 

in terms of types of instabilities and important issues addressed. Some results from 

others will also be cited here to provide a complete context of this study. 

6.1     Analytical Studies 

Temporal Instability 

Briggs (1964) proved that for any system to support unstable waves, its 

dispersion equation must yield complex solutions with positive imaginary parts for 

some real k, i.e. it is a necessary condition for any unstable waves. This implies 

that spatial and pulse instabilities only occur when temporal instability also occurs. 

This furthermore implies that Charney and Stern's necessary condition for temporal 

instability in geophysical context (1962) is also necessary condition for spatial and 

pulse instabilities. 
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Spatial Instability 

Briggs also shows that not all solutions with the right sign for spatial insta- 

bility are growing waves. We need to apply Briggs criterion (described in Section 2.3) 

to distinguish real growing waves from other solutions with the same sign. I have used 

the criterion to say that the implication in Hogg's (1976) work that spatial instability 

does not require potential vorticity gradients to change sign is not legitimate. In ad- 

dition, I have shown that the spatially unstable wave Hogg considered is really better 

thought of as neutral because of the assumption that phase speed is real. Hence one 

of his results, that spatially growing waves are bounded by a low wavenumber cut-off 

which separates them from the temporally growing waves, is not valid. 

Michalke (1965) first studied the difference between spatial growth rate 

(SGR) and pseudo-equivalent spatial growth rate (PESGR). He found that PESGR 

was 17% smaller than SGR in a barotropic flow with a hyperbolic tangent velocity 

profile. In Chapter 2 and 3, I have made comparisons among SGR, PESGR and ESGR 

(the equivalent spatial growth rate) and examined the validity of Gaster's formula 

in the Phillips model and the QG six-layer model with relatively realistic jet struc- 

ture and topography. In the QG six-layer model, we have found that spatial growth 

rate (SGR) is generally larger by about 30% than the equivalent spatial growth rate 

(ESGR) converted from temporal instability. The difference is slightly bigger than 

that in Phillips model probably due to jet structure or topography. Pseudo-equivalent 

spatial growth rates (PESGR), transformed from temporal growth rates divided by 

phase speeds, exceed SGR by 200% at low frequency and are not a good estimate of 

SGR in general. 

As seen in both Chapter 2 and 3, real parts of wavenumbers (or wavelengths) 

corresponding to the most temporally and spatially unstable waves are comparable 

and not sensitive to mean velocities, velocity shear and ß. 

182 



Pulse Instability 

The maximum of the envelope of the growing disturbance moves at group 

velocity of the most temporally unstable wave, and grows at the rate of the same 

wave. The growth rate of an individual peak depends on the location of the peak 

relative to the maximum of the envelope. Given Cg > Cph, individual peaks behind 

the maximum of the envelope grow at a rate smaller than a>{mai. At the leading edge, 

individual peaks can grow much faster than the peak of the envelope, which makes 

the envelope move faster than the individual peaks. These general results were first 

found by Simmons and Hoskins (1979) in atmospheric observation. The formula of 

growth rate of an individual peak was also given in the paper without a derivation. In 

Chapter 2, I have provided a derivation of the formula and focused on the behaviors of 

individual peaks. In particular, when the growth rate of an individual peak is plotted 

as a function of its amplitude, it decreases as the amplitude increases. It has been 

demonstrated in this work that the relation between the growth rate of an individual 

peak and its amplitude is an intrinsic property and an important feature of pulse 

instability. Thus if one follows a single peak and notices a decrease in the growth 

rate, one cannot infer that increasing amplitude (or nonlinearity) was responsible 

for reducing the growth rate. This is also demonstrated in Chapter 3 with a more 

realistic dispersion relation. 

When the study of pulse instability is extended to the QG six-layer model 

in Chapter 3, we have found that the growth rates of individual peaks can vary from 

30% to 220% of that of the peak of the wave envelope. Therefore the waves in the 

leading edge of a wave packet may grow several times faster than the waves in the 

trailing edge in the exponential sense. This can not be predicted by temporal or 

spatial instability theories. 

Direct comparison between temporal and pulse theory in Chapter 2 shows 

that pulse instability allows unstable waves to have wavenumbers beyond the short 

183 



wave cut-off of the temporal theory. This is possible since we are comparing the real 

part of the local wavenumber in pulse theory with a global wavenumber in temporal 

theory. The local wavenumber in pulse theory contains a nonzero imaginary part, 

so that even if its real part is the same as the wavenumber in temporal theory, its 

frequency u}{kT + iki) has been extended to the complex k plane and is naturally 

different from that in temporal theory (uj(kr)). 

When a single pulse evolves as pulse instability predicts, the amplitude of a 

specific wavenumber in the energy spectrum still grows according to the growth rate 

of temporal instability. Therefore when pulse instability occurs, the most energetic 

wave is the most temporally unstable wave. 

Effect of Topography 

In Chapter 3, from the analysis of potential density and the spread ratio, 

we have shown that a minimum of three layers is necessary to address the effect of 

topography properly in the context of the Gulf Stream. The main reason is that the 

effect of topography on potential vorticity distribution is confined in a layer near the 

bottom and should be represented separately from the interior of the flow system. 

Comparison among two to six-layer models support this point. The comparison also 

shows that short waves are more sensitive to vertical resolution. In the case of pulse 

instability, a minimum of five layers is necessary to capture the characteristics of 

the instability. This is because the growth rates of individual peaks depend on the 

difference between the phase speed and group velocity. The latter depends on the 

derivative of the former and is more sensitive to vertical and horizontal resolution, 

especially in regions where the mean velocity changes rapidly. 

Effect of Ageostrophy 
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In Chapter 4, we have found that the QG six-layer model overestimates 

substantially the maximum growth rate compared to the SW six-layer model (e.g. 

40% higher in QG6 than that in SW6). This is consistent with the previous study 

by Orlansky (1969) that finite Rossby number reduces the growth rates of unsta- 

ble waves. However, QG and SW models give comparable wavelengths and phase 

speeds of the main unstable modes (e.g. 349km and 7.9km/day in QG6 vs 363km 

and 7.5km/day in SW6). The growth rates of individual peaks in the two models 

agree very well as functions of the group velocity, though the maximum growth rates 

are still significantly different. The conclusion from this comparison is that the QG 

model gives results quantitatively different from those from the SW model, but there 

is no qualitative difference between the two models in terms of the first most unstable 

modes. 

Comparisons with Observations 

In Chapter 4, I have drawn connection between our model results and ob- 

servations. In the comparison with observations, I focused on the studies by Lee and 

Cornillon (1996a,b) since only their work distinguishes the fastest growing wave from 

most energetic wave in a well-defined way, to the best of my knowledge. Despite 

some discrepancies among the models and the results of their analysis, it appears to 

be a robust common feature that the fastest growing wave has higher growth rate, 

wavenumber and frequency than the most unstable wave. And the differences be- 

tween the most unstable and the fastest growing waves in the pulse instability models 

seem able to explain substantial parts of the differences observed. 

185 



6.2    Numerical Experiments 

Development of a Single Pulse 

In the context of the Gulf Stream, it takes about 45 days for a single pulse 

disturbance to develop close to its asymptotic form. In that period the wave packet 

has moved downstream 1100km to about 65°W. This is still in the range where the 

Gulf Stream system has been intensively observed. Hence there appears to be enough 

space for the pulse instability to occur in the Gulf Stream. On 61st day, the fastest 

growing wave has a growth rate of 0.086/day, which is 60% higher than the maximum 

envelope growth 0.053/day. The former has a wavelength, phase speed and period of 

(310km, 14km/day, 22 days), and the latter (336km, 12km/day, 29 days). 

It appears that the QG two-layer analytical and numerical model have com- 

parable ratios of quantities between the fastest growing waves and most energetic 

waves despite the fact that the maximum growth rate in the numerical model is 18% 

lower than its analytical counterpart on 45th day or 14% lower on 61th day . This 

difference is mainly due to the 0(l/t) contribution neglected in the analytical growth 

rate. When t is as short as 45 days or 61 days, the main features of pulse instability 

already show up clearly in the numerical model. This suggests that the analytical 

results of SW6 and QG6 may also be carried over to their corresponding numerical 

models. And it seems reasonable to compare the analytical results of SW6 and QG6 

directly with observations. 

Continuously Forced Problem 

In the continuously forced problem, we have found that the growth rates 

of individual peaks from the numerical runs scatter widely, especially in the region 

from 200km to 1200km downstream of the forcing location. It is clear that neither of 
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the three types of instabilities can explain the pattern given the continuous forcing. 

However, the "observations" from the model runs have shown one trend predicted by- 

pulse instability: short waves tend to move and grow faster than long waves. This 

can not be predicted from temporal or spatial instability. Unfortunately, due to a 

numerical difficulty, I have not been able to extend the analysis to the region further 

downstream, where the pulse instability has been found to work better from the single 

pulse experiment. 

These numerical experiments again support the robust common features of 

pulse instability we have studied in Chapter 2 to 4, that the fastest growing wave 

has higher growth rate, wavenumber and frequency than the most energetic wave. 

Because the differences between the most energetic and the fastest growing waves of 

pulse instability theory in the analytical models seem able to explain substantial parts 

of the differences observed and the single pulse experiment suggests the analytical 

results may be carried over to their corresponding numerical models, pulse instability 

theory appears to be the most appropriate model for the Gulf Stream. 

In light of our findings from the continuously forced problem, it appears 

very difficult to extract analytical dispersion relation based on the numerical mea- 

surement, even in the simple numerical model which has many fewer complicating 

factors than the real Gulf Stream (e.g. no nonlinearity, no downstream variation 

of basic flow and topography, etc.). However, wavenumber bin-averaged rates tend 

to agree with pulse instability to some extent. Hence this experiment suggests that 

grouping observational data into bins of wavenumbers— the technique used by Lee 

and Cornillon (1996b) to find the fastest growing wave—is the most appropriate way 

to compare with analytical models. 

The continuously forced problem does not support spatial instability. Hence 

it does not fit the way Johns (1988) and Kontoyiannis (1992) compared their model 

analytical dispersion relations with the observations.  They extracted spatial growth 
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rates from EOF analysis and compared them with equivalent or pseudo-equivalent 

spatial growth rates (ESGR or PESGR) from temporal instability discussed in Chap- 

ter 2 and 3. 

The greatest strength of this experiment is the use of time series of north 

wall displacement near the inlet as a forcing function, which is more realistic than 

the idealized forcing used in other models (e.g. Xue, 1991b, used a periodic forcing). 

In addition, we have tried to compare the results carefully with analytical theory. 

6.3    Limitation of This Study and Future Work 

Our research on pulse instability has provided a plausible explanation for the 

differences between the most energetic wave and the fastest growing wave observed 

in the Gulf Stream. However, we have not yet studied how the nonlinearity may alter 

the picture. In fact, Lee and Cornillon (1996b) attribute the observed differences 

to nonlinearity based on evidence that the fastest growing meanders (350km) are 

somewhat shorter than the most energetic meanders (427km). This observation is 

consistent with the theoretical notion (Pedlosky, 1981) that the most energetic wave 

realized at finite amplitude is longer than the linearly most unstable wave. However, 

we know from this thesis study that the observed differences are also consistent with 

linear pulse theory and continuously forced numerical experiments. It is conceiv- 

able that nonlinearity can also contribute to the difference, with the pulse instability 

mechanism setting up the main trend and the nonlinear effect gradually increasing 

its role and perhaps enhancing the trend as the ratios of wave amplitudes to their 

wavelengths increase. 

From the single pulse experiment, we know that it takes about 45 days 

for a single pulse disturbance to develop close to its asymptotic form. However in 

45 days, the maximum amplitude of wave packet is 17 times its initial amplitude 
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(exp(.063 * 45) = 17.0). Assuming an initial amplitude of 10km at Cape Hatteras, 

the amplitude of the wave envelope will be 170km at about 65°W, about half of 

the wavelength. So the effect of nonlinearity may have already become significant, 

making it harder to compare data with analytical results directly. Without a study 

of nonlinear effects in the context of the Gulf Stream with realistic forcing, we cannot 

answer to what extent the nonlinearity will alter the results obtained from linear 

theories and linear numerical experiments. Neglecting nonlinearity is the greatest 

limitation of this study and I hope we will be able to address this issue in the future. 

Swanson and Pierrehumbert (1993) carried out a nonlinear numerical study 

of pulse instability in a QG two-layer model. Their work was to study the fundamental 

nature of the midlatitude storm tracks in the atmosphere. Their experiments were 

similar to the single pulse experiments shown in Chapter 5. In their model, longer 

waves move faster and short waves appear in the upper stream end of the wave packet, 

in the linear stage of development. This pattern is consistent with analytical results 

of Farrell (1982) in the similar two-layer model with parameter tuned in atmosphere. 

And as I pointed out in Chapter 2 that this pattern is the opposite of the trend in 

the oceanic two-layer model. 

As the nonlinearity became significant, they found that the short waves 

in the trailing edge started to equilibrate earlier at smaller amplitudes and phase 

speed started to decrease while fast moving and fast growing long waves continued to 

develop in the leading edge. This contrast eventually separated the wave packet into 

leading edge and trailing edge parts. This is unlikely to happen in the oceanic QG 

two-layer model since short waves travel faster and grow faster than long waves. If 

the effect of nonlinearity is also to slow down the phase speed and short waves start 

to equilibrate earlier than long waves, the trailing edge part will catch up the leading 

edge part so the development will be different from that observed by Swanson and 

Pierrehumbert. Thus, the results obtained from atmospheric studies are not directly 
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applicable in the ocean and it is worth while studying nonlinear effect directly in the 

oceanic model. 

The second limitation of this thesis study is that we have not considered any 

variation of velocity and topography along the stream. We can expect this variation 

may alter the picture of instability to some extent; for example, when the structure 

of the mean flow changes downstream, the growth rates of waves will adjust and this 

will alter the picture of pulse instability. When the flow moves down the stream, 

the underlying bottom topography becomes flatter and may cause the flow to be 

more unstable, and the wave patterns in the system may look different from our 

numerical experiments which assumes no variation of velocity and topography along 

the stream. Topography may also cause reflection of waves to form resonant global 

modes. Including any or all of these effects—nonlinearity, variations in jet structure, 

topography—may affect the picture of wave activities in the Gulf Stream to some 

extent. Despite the limitations of the linear model, however, the trend which shows 

up in the analytical and numerical models and in the observational analysis may still 

appear because the waves are still not periodic. However these limiting factors will 

make the comparison between data and models much more difficult. 

The third limitation is that the model cannot run long enough so our results 

are based on the responses to segments of the forcing function but not the full, 

multiyear record. The fourth limitation is that, due to the limited model precision, 

the analysis in the continuously forced problem has not been extended to the further 

downstream region from 1000km to 2000km where the pulse instability has been found 

to work better from the single pulse experiments. 

We know from Chapter 4 that in the SW six-layer model, the second most 

unstable mode has a maximum of growth rate very close to the most unstable mode 

(84%) whereas in the QG six-layer model, this ratio is 41%, and in the QG two-layer 
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model 62%.   If we could run a SW six-layer numerical model, we might expect the 

results to have some significant differences from the QG two-layer model. 

191 



192 



Appendices 

A    The Saddle Point Finder 

When a dispersion relation A(w, k) = 0 or u — u{k) is defined numerically, 

there are two ways to locate a saddle point. 

1. Direct search of LOS for each kT. 

Plot real part of the frequency UJ in complex k plane. For any given kr, we 

increase or decrease ki from real k axis until hitting the point -§£WT = 0 (see Figure A. 

1). Repeat this procedure for adjacent value of kT, and we will find a curve satisfying 

the saddle point condition ^wr = 0. For each point on the curve, group velocity 

Cg = W~
U

T = Sk.Ui can he calculated. So for each kr value, we will find a saddle 

point (ks, ws, Cg3), where subscript V simply indicates a value at a saddle point. 

We then use Cgs as an index to sort out ks and CJ3 as functions of Cgs 

This method is more direct but is less efficient numerically compared to the 

second method showed below. Moreover, it is more difficult to look for solutions in 

some segments of the curve such as the part between A and B when there are multiple 

values of u) corresponding to one value of kT. 

2. The saddle point finder. 

This method can be easily illustrated in one dimensional search for a maxi- 

mum or a minimum of a function f(x) (see Figure A. 2). Both /(x) and x are real. 

To find the point with J^/ = 0, one can make an initial guess of x;, and calculate 

fx = f[xi — Ax), /2 = f{x{) and /3 = /(x; + Ax). Then we can fit these three points 

with a second order polynomial F(x) = ax2 + bx + c. After (a,b,c) are calculated, 

■^F(x) = lax + b = 0 gives an estimate x\ = =£ for the next search.  Drop one of 
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k j 

kr 

Figure A. 1: A sketch to show how to search for saddle points directly in complex k plane. 

Figure A. 2:  A sketch to show how to search for a maximum of a real function efficiently. 

the three points (x; — Ax, X{ Xi + Ax) which is farthest away from x\. With a new 

set of three points including xx, the next prediction can be made. In such a way true 

location with J^/ = 0 can be found very efficiently. 

Now we return to our problem of finding ^o; = 0. The above method can 

be applied directly except now u) and k are complex. However, since (a,b,c) can also 

be complex, we are still able to determine 6 parameters of (<zr, a{, br, bi, cT, c;) from 

6 given values (a>ir, wji, ^2r, ^2t, w3r, ^3i) and to find the location with -^to = 0 

similarly. This point with JJTO; = 0 is automatically a saddle point if oo{k) is an 

analytical function of k in a small region nearby. 

The search for saddle points should start at the group velocity Cg cor- 

responding to the most unstable wave (u>max,   kmax) in temporal instability, since 
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w(kmax) itself is a saddle point of function Q = u — Cgk. Then we increase or de- 

crease Cg to find a saddle point for (Cg + ACg) or (Cg — AC3). The result from 

each step is used as the initial guess to locate the next saddle point. The method 

was first used for this problem by Lin and Pierrehumbert (1993). The drawback of 

this approach is that it is very sensitive to initial guesses; hence the increment of Cg, 

ACg, must be very small, otherwise branch switching will happen. This sensitivity 

costs significant amount of computing time. I have modified the code by extrapolat- 

ing the next saddle point from previous three saddle points (second order polynomial 

extrapolation) and reduced the computing time by an order of magnitude. 
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B     Method for Solving Spatial Instability Prob- 
lem 

Similar to the temporal instability problem, we need to solve the dispersion 

relation A(a>, k) = 0. However, as I mentioned in Sec. (2.3.2), an additional difficulty 

arises because the original linear eigenvalue problem for u> now become nonlinear 

problem for k. No standard software is available to solve the whole nonlinear problem 

as far as I know. I have used the following method to search for spatial instability 

corresponding to a few most temporally unstable branches of the dispersion equation. 

The best place to start the search is the most unstable frequency ujmax 

(complex) and wavenumber kmax (real) of a temporally unstable mode. For given 

w = ojrmax , use kmax — ig'^ as an initial guess. We contour A(u;, k) on the (kr, ki) 

plane around the initial guess to find the zero point of A(w, k). Because the initial 

guess may be quite far away from the solution, it may need several trial and error 

experiments to include the solution in the search domain. As long as the first point 

can be found, the rest is easier. After we have found the first solution A;0, which is 

typically complex, we decrease (or increase) w by a very small amount Aa;1; take 

k0 as the initial guess and search for the next solution kt, then we can use (k0, &i) 

to extrapolate k2 linearly for UJ2 = wrrnax — Awi — Aw2- After we have found three 

solutions, we use a second order polynomial to extrapolate the next initial guess. By 

using such interpolation, we are able to increase the step Aw significantly without 

switching to other modes. 

Briggs' method of selecting solutions of spatial instabilities described in Sec- 

tion 2.3.2 must be performed to confirm that solutions obtained correspond to am- 

plifying waves. 
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C     Effects of Resolution and Channel Width 

This appendix is related to the QG analytical models used in Chapter 3. 

In this appendix, I will perform sensitivity tests on horizontal resolution and on the 

effect of channel width. I use a two-layer model with flat bottom and the modified 

profile described in Section 3.3. Figure C. 1 shows the differences between different 

resolutions used. The upper panel shows phase speeds vs real wavenumber k and 

the lower panel temporal growth rate u;; vs real wavenumber k . Solid curves are 

associated with 8y=2.5km; dashed, 5km; and dotted, 10km. Channel width is fixed 

at 300km for all three experiments. The figure only shows the three most unstable 

curves. As we can see from the figure, the differences among the results associated 

with all three resolutions are small and the results converge when the resolution 

increases. Hence I am confident that 8y=5km or 10km is adequate for all the other 

experiments. 

Figure C. 2 shows the difference in phase speeds and temporal growth rates 

resulting from channel widths of 300km and 400km. Solid curves are associated with 

channel width of 400km and dashed 300km. Model resolution is fixed at 2.5km. The 

difference between the two cases is insignificant and hence I will use channel width of 

300km for all other experiments except where otherwise specified. 
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2 3 4 
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Figure C. 1: Resolution Test. Upper panel: Phase speeds vs real wavenumber k. Lower panel: 

Temporal growth rate w,- vs real wavenumber k . Solid curves for 6y=2.5km; dashed, 5km; and 

dotted, 10km. Channel width is fixed at 300km 
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Figure C. 2: Effect of channel width. Upper panel: Phase speeds vs real wavenumber k. Lower 

panel: Temporal growth rate Lü{ VS real wavenumber k . Solid curves for channel width=400km; 

dashed, 300km. Sy is fixed at 5km 
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